Skip to content

libcore SIP hasher #1247

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
14 of 16 tasks
philberty opened this issue May 12, 2022 · 3 comments
Open
14 of 16 tasks

libcore SIP hasher #1247

philberty opened this issue May 12, 2022 · 3 comments

Comments

@philberty
Copy link
Member

philberty commented May 12, 2022

This is an interesting testcase thanks to @bjorn3

Related Bugs:

//! An implementation of SipHash.

//#[lang = "sized"]
//trait Sized {}

mod intrinsics {
    extern "rust-intrinsic" {
        pub fn wrapping_add<T>(a: T, b: T) -> T;
        pub fn rotate_left<T>(a: T, b: T) -> T;
        pub fn offset<T>(ptr: *const T, count: isize) -> *const T;
    }
}

#[lang = "add"]
trait Add<Rhs = Self> {
    type Output;

    fn add(self, rhs: Rhs) -> Self::Output;
}

macro_rules! add_impl {
    ($($t:ty)*) => ($(
        impl Add for $t {
            type Output = $t;

            #[inline]
            #[rustc_inherit_overflow_checks]
            fn add(self, other: $t) -> $t { self + other }
        }

        //forward_ref_binop! { impl const Add, add for $t, $t }
    )*)
}

add_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }

impl<T> *const T {
    pub unsafe fn add(self, count: usize) -> Self {
        // SAFETY: the caller must uphold the safety contract for `offset`.
        unsafe { self.offset(count as isize) }
    }

    pub unsafe fn offset(self, count: isize) -> *const T {
        // SAFETY: the caller must uphold the safety contract for `offset`.
        unsafe { intrinsics::offset(self, count) }
    }
}

macro_rules! impl_uint {
    ($($ty:ident = $lang:literal),*) => {
        $(
            //#[lang = $lang]
            impl $ty {
                pub fn wrapping_add(self, rhs: Self) -> Self {
                    intrinsics::wrapping_add(self, rhs)
                }

                pub fn rotate_left(self, n: u32) -> Self {
                    intrinsics::rotate_left(self, n as Self)
                }

                pub fn to_le(self) -> Self {
                    #[cfg(target_endian = "little")]
                    {
                        self
                    }
                    // FIXME(#1233)
                    //#[cfg(not(target_endian = "little"))]
                    //{
                    //    self.swap_bytes()
                    //}
                }
            }
        )*
    }
}

impl_uint!(u8 = "u8", u16 = "u16", u32 = "u32", u64 = "u64", u128 = "u128", usize = "usize");

#[repr(C)]
pub(crate) struct SliceComponents {
    pub(crate) data_address: *const (),
    pub(crate) metadata: usize,
}

#[repr(C)]
pub(crate) union SliceRepr<T> {
    pub(crate) const_ptr: *const [T],
    pub(crate) mut_ptr: *mut [T],
    pub(crate) components: SliceComponents,
}

impl<T> [T] {
    pub const fn as_ptr(&self) -> *const T {
        self as *const [T] as *const T
    }

    pub unsafe fn get_unchecked(&self, index: usize) -> &T {
        unsafe { &*self.as_ptr().add(index) }
    }

    pub fn len(&self) -> usize {
        unsafe { SliceRepr { const_ptr: self as *const _ }.components.metadata }
    }
}

trait HasherTrait {
    fn write(&mut self, msg: &[u8]);
    fn finish(&self) -> u64;
}

mod cmp {
    pub fn min(a: usize, b: usize) -> usize {
        if a < b {
            a
        } else {
            b
        }
    }
}

struct PhantomData<T>;

mod mem {
    extern "rust-intrinsic" {
        fn transmute<T, U>(_: T) -> U;
        fn size_of<T>() -> usize;
    }
}

mod ptr {
    extern "rust-intrinsic" {
        fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize);
    }
}

#[repr(C)]
struct State {
    v0: u64,
    v2: u64,
    v1: u64,
    v3: u64,
}

struct Hasher<S: Sip> {
    k0: u64,
    k1: u64,
    length: usize, // how many bytes we've processed
    state: State,  // hash State
    tail: u64,     // unprocessed bytes le
    ntail: usize,  // how many bytes in tail are valid
    _marker: PhantomData<S>,
}

macro_rules! compress {
    ($state:expr) => {{
        compress!($state.v0, $state.v1, $state.v2, $state.v3)
    }};
    ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => {{
        $v0 = $v0.wrapping_add($v1);
        $v1 = $v1.rotate_left(13);
        $v1 ^= $v0;
        $v0 = $v0.rotate_left(32);
        $v2 = $v2.wrapping_add($v3);
        $v3 = $v3.rotate_left(16);
        $v3 ^= $v2;
        $v0 = $v0.wrapping_add($v3);
        $v3 = $v3.rotate_left(21);
        $v3 ^= $v0;
        $v2 = $v2.wrapping_add($v1);
        $v1 = $v1.rotate_left(17);
        $v1 ^= $v2;
        $v2 = $v2.rotate_left(32);
    }};
}

#[doc(hidden)]
trait Sip {
    fn c_rounds(_: &mut State);
    fn d_rounds(_: &mut State);
}

struct Sip13Rounds;

impl Sip for Sip13Rounds {
    #[inline]
    fn c_rounds(state: &mut State) {
        compress!(state);
    }

    #[inline]
    fn d_rounds(state: &mut State) {
        compress!(state);
        compress!(state);
        compress!(state);
    }
}

struct Sip24Rounds;

impl Sip for Sip24Rounds {
    #[inline]
    fn c_rounds(state: &mut State) {
        compress!(state);
        compress!(state);
    }

    #[inline]
    fn d_rounds(state: &mut State) {
        compress!(state);
        compress!(state);
        compress!(state);
        compress!(state);
    }
}

pub struct SipHasher13 {
    hasher: Hasher<Sip13Rounds>,
}

struct SipHasher24 {
    hasher: Hasher<Sip24Rounds>,
}

pub struct SipHasher(SipHasher24);

macro_rules! load_int_le {
    ($buf:expr, $i:expr, $int_ty:ident) => {{
        let mut data = 0 as $int_ty;
        ptr::copy_nonoverlapping(
            $buf.as_ptr().add($i),
            &mut data as *mut _ as *mut u8,
            mem::size_of::<$int_ty>(),
        );
        data.to_le()
    }};
}

#[inline]
unsafe fn u8to64_le(buf: &[u8], start: usize, len: usize) -> u64 {
    let mut i = 0; // current byte index (from LSB) in the output u64
    let mut out = 0;
    if i + 3 < len {
        // SAFETY: `i` cannot be greater than `len`, and the caller must guarantee
        // that the index start..start+len is in bounds.
        out = unsafe { load_int_le!(buf, start + i, u32) } as u64;
        i += 4;
    }
    if i + 1 < len {
        // SAFETY: same as above.
        out |= (unsafe { load_int_le!(buf, start + i, u16) } as u64) << ((i * 8) as u64);
        i += 2
    }
    if i < len {
        // SAFETY: same as above.
        out |= (unsafe { *buf.get_unchecked(start + i) } as u64) << ((i * 8) as u64);
        i += 1;
    }
    out
}

impl SipHasher {
    #[inline]
    #[must_use]
    pub fn new() -> SipHasher {
        SipHasher::new_with_keys(0, 0)
    }

    #[inline]
    #[must_use]
    pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher {
        SipHasher(SipHasher24 {
            hasher: Hasher::new_with_keys(key0, key1),
        })
    }
}

impl SipHasher13 {
    #[inline]
    pub fn new() -> SipHasher13 {
        SipHasher13::new_with_keys(0, 0)
    }

    #[inline]
    pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher13 {
        SipHasher13 {
            hasher: Hasher::new_with_keys(key0, key1),
        }
    }
}

impl<S: Sip> Hasher<S> {
    #[inline]
    fn new_with_keys(key0: u64, key1: u64) -> Hasher<S> {
        let mut state = Hasher {
            k0: key0,
            k1: key1,
            length: 0,
            state: State {
                v0: 0,
                v1: 0,
                v2: 0,
                v3: 0,
            },
            tail: 0,
            ntail: 0,
            _marker: PhantomData,
        };
        state.reset();
        state
    }

    #[inline]
    fn reset(&mut self) {
        self.length = 0;
        self.state.v0 = self.k0 ^ 0x736f6d6570736575;
        self.state.v1 = self.k1 ^ 0x646f72616e646f6d;
        self.state.v2 = self.k0 ^ 0x6c7967656e657261;
        self.state.v3 = self.k1 ^ 0x7465646279746573;
        self.ntail = 0;
    }
}

impl HasherTrait for SipHasher {
    #[inline]
    fn write(&mut self, msg: &[u8]) {
        self.0.hasher.write(msg)
    }

    #[inline]
    fn finish(&self) -> u64 {
        self.0.hasher.finish()
    }
}


impl HasherTrait for SipHasher13 {
    #[inline]
    fn write(&mut self, msg: &[u8]) {
        self.hasher.write(msg)
    }

    #[inline]
    fn finish(&self) -> u64 {
        self.hasher.finish()
    }
}

impl<S: Sip> HasherTrait for Hasher<S> {
    #[inline]
    fn write(&mut self, msg: &[u8]) {
        let length = msg.len();
        self.length += length;

        let mut needed = 0;

        if self.ntail != 0 {
            needed = 8 - self.ntail;
            // SAFETY: `cmp::min(length, needed)` is guaranteed to not be over `length`
            self.tail |= unsafe { u8to64_le(msg, 0, cmp::min(length, needed)) } << ((8 * self.ntail) as u64);
            if length < needed {
                self.ntail += length;
                return;
            } else {
                self.state.v3 ^= self.tail;
                S::c_rounds(&mut self.state);
                self.state.v0 ^= self.tail;
                self.ntail = 0;
            }
        }

        // Buffered tail is now flushed, process new input.
        let len = length - needed;
        let left = len & 0x7; // len % 8

        let mut i = needed;
        while i < len - left {
            let mi = unsafe { load_int_le!(msg, i, u64) };

            self.state.v3 ^= mi;
            S::c_rounds(&mut self.state);
            self.state.v0 ^= mi;

            i += 8;
        }

        self.tail = unsafe { u8to64_le(msg, i, left) };
        self.ntail = left;
    }

    #[inline]
    fn finish(&self) -> u64 {
        let mut state = self.state;

        let b: u64 = ((self.length as u64 & 0xff) << 56) | self.tail;

        state.v3 ^= b;
        S::c_rounds(&mut state);
        state.v0 ^= b;

        state.v2 ^= 0xff;
        S::d_rounds(&mut state);

        state.v0 ^ state.v1 ^ state.v2 ^ state.v3
    }
}
@bjorn3
Copy link

bjorn3 commented May 12, 2022

The test case you pushed has workarounds for a lot of gccrs bugs. Also #1006 should be added to the list of bugs it depends on. The original code is https://github.com/rust-lang/rust/blob/1.60.0/library/core/src/hash/sip.rs

@bjorn3
Copy link

bjorn3 commented Aug 8, 2022

New version with less workarounds for fixed bugs:

Now only fails on #1449 and #1450.

mod intrinsics {
    extern "rust-intrinsic" {
        pub fn wrapping_add<T>(a: T, b: T) -> T;
        pub fn rotate_left<T>(a: T, b: T) -> T;
        pub fn offset<T>(ptr: *const T, count: isize) -> *const T;
    }
}

#[lang = "add"]
trait Add<Rhs = Self> {
    type Output;

    fn add(self, rhs: Rhs) -> Self::Output;
}

macro_rules! add_impl {
    ($($t:ty)*) => ($(
        impl Add for $t {
            type Output = $t;

            #[inline]
            fn add(self, other: $t) -> $t { self + other }
        }

        //forward_ref_binop! { impl const Add, add for $t, $t }
    )*)
}

add_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }

impl<T> *const T {
    pub unsafe fn add(self, count: usize) -> Self {
        // SAFETY: the caller must uphold the safety contract for `offset`.
        unsafe { self.offset(count as isize) }
    }

    pub unsafe fn offset(self, count: isize) -> *const T {
        // SAFETY: the caller must uphold the safety contract for `offset`.
        unsafe { intrinsics::offset(self, count) }
    }
}

macro_rules! impl_uint {
    ($($ty:ident = $lang:literal),*) => {
        $(
            //#[lang = $lang]
            impl $ty {
                pub fn wrapping_add(self, rhs: Self) -> Self {
                    unsafe { intrinsics::wrapping_add(self, rhs) }
                }

                pub fn rotate_left(self, n: u32) -> Self {
                    unsafe { intrinsics::rotate_left(self, n as Self) }
                }

                pub fn to_le(self) -> Self {
                    #[cfg(target_endian = "little")]
                    {
                        self
                    }
                    //FIXME(#1446)
                    //#[cfg(not(target_endian = "little"))]
                    //{
                    //    self.swap_bytes()
                    //}
                }
            }
        )*
    }
}

impl_uint!(u8 = "u8", u16 = "u16", u32 = "u32", u64 = "u64", u128 = "u128", usize = "usize");

#[repr(C)]
pub struct SliceComponents {
    pub data_address: *const (),
    pub metadata: usize,
}

#[repr(C)]
pub union SliceRepr<T> {
    pub const_ptr: *const [T],
    pub mut_ptr: *mut [T],
    pub components: SliceComponents,
}

impl<T> [T] {
    pub const fn as_ptr(&self) -> *const T {
        self as *const [T] as *const T
    }

    pub unsafe fn get_unchecked(&self, index: usize) -> &T {
        unsafe { &*self.as_ptr().add(index) }
    }

    pub fn len(&self) -> usize {
        unsafe { SliceRepr { const_ptr: self as *const _ }.components.metadata }
    }
}

trait HasherTrait {
    fn write(&mut self, msg: &[u8]);
    fn finish(&self) -> u64;
}

mod cmp {
    pub fn min(a: usize, b: usize) -> usize {
        if a < b {
            a
        } else {
            b
        }
    }
}

struct PhantomData<T>;

mod mem {
    extern "rust-intrinsic" {
        fn transmute<T, U>(_: T) -> U;
        fn size_of<T>() -> usize;
    }
}

mod ptr {
    extern "rust-intrinsic" {
        fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize);
    }
}

#[repr(C)]
struct State {
    // v0, v2 and v1, v3 show up in pairs in the algorithm,
    // and simd implementations of SipHash will use vectors
    // of v02 and v13. By placing them in this order in the struct,
    // the compiler can pick up on just a few simd optimizations by itself.
    v0: u64,
    v2: u64,
    v1: u64,
    v3: u64,
}

struct Hasher<S: Sip> {
    k0: u64,
    k1: u64,
    length: usize, // how many bytes we've processed
    state: State,  // hash State
    tail: u64,     // unprocessed bytes le
    ntail: usize,  // how many bytes in tail are valid
    _marker: PhantomData<S>,
}

macro_rules! compress {
    ($state:expr) => {{ compress!($state.v0, $state.v1, $state.v2, $state.v3) }};
    ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => {{
        $v0 = $v0.wrapping_add($v1);
        $v1 = $v1.rotate_left(13);
        $v1 ^= $v0;
        $v0 = $v0.rotate_left(32);
        $v2 = $v2.wrapping_add($v3);
        $v3 = $v3.rotate_left(16);
        $v3 ^= $v2;
        $v0 = $v0.wrapping_add($v3);
        $v3 = $v3.rotate_left(21);
        $v3 ^= $v0;
        $v2 = $v2.wrapping_add($v1);
        $v1 = $v1.rotate_left(17);
        $v1 ^= $v2;
        $v2 = $v2.rotate_left(32);
    }};
}

/// Loads an integer of the desired type from a byte stream, in LE order. Uses
/// `copy_nonoverlapping` to let the compiler generate the most efficient way
/// to load it from a possibly unaligned address.
///
/// Unsafe because: unchecked indexing at i..i+size_of(int_ty)
macro_rules! load_int_le {
    ($buf:expr, $i:expr, $int_ty:ident) => {{
        let mut data = 0 as $int_ty;
        ptr::copy_nonoverlapping(
            $buf.as_ptr().add($i),
            &mut data as *mut _ as *mut u8,
            mem::size_of::<$int_ty>(),
        );
        data.to_le()
    }};
}

/// Loads a u64 using up to 7 bytes of a byte slice. It looks clumsy but the
/// `copy_nonoverlapping` calls that occur (via `load_int_le!`) all have fixed
/// sizes and avoid calling `memcpy`, which is good for speed.
///
/// Unsafe because: unchecked indexing at start..start+len
#[inline]
unsafe fn u8to64_le(buf: &[u8], start: usize, len: usize) -> u64 {
    let mut i = 0; // current byte index (from LSB) in the output u64
    let mut out = 0;
    if i + 3 < len {
        // SAFETY: `i` cannot be greater than `len`, and the caller must guarantee
        // that the index start..start+len is in bounds.
        out = unsafe { load_int_le!(buf, start + i, u32) } as u64;
        i += 4;
    }
    if i + 1 < len {
        // SAFETY: same as above.
        out |= (unsafe { load_int_le!(buf, start + i, u16) } as u64) << (i * 8);
        i += 2
    }
    if i < len {
        // SAFETY: same as above.
        out |= (unsafe { *buf.get_unchecked(start + i) } as u64) << (i * 8);
        i += 1;
    }
    out
}

#[doc(hidden)]
trait Sip {
    fn c_rounds(_: &mut State);
    fn d_rounds(_: &mut State);
}

struct Sip13Rounds;

impl Sip for Sip13Rounds {
    #[inline]
    fn c_rounds(state: &mut State) {
        compress!(state);
    }

    #[inline]
    fn d_rounds(state: &mut State) {
        compress!(state);
        compress!(state);
        compress!(state);
    }
}

struct Sip24Rounds;

impl Sip for Sip24Rounds {
    #[inline]
    fn c_rounds(state: &mut State) {
        compress!(state);
        compress!(state);
    }

    #[inline]
    fn d_rounds(state: &mut State) {
        compress!(state);
        compress!(state);
        compress!(state);
        compress!(state);
    }
}

/// An implementation of SipHash 1-3.
///
/// This is currently the default hashing function used by standard library
/// (e.g., `collections::HashMap` uses it by default).
///
/// See: <https://131002.net/siphash>
#[doc(hidden)]
pub struct SipHasher13 {
    hasher: Hasher<Sip13Rounds>,
}

/// An implementation of SipHash 2-4.
///
/// See: <https://131002.net/siphash/>
struct SipHasher24 {
    hasher: Hasher<Sip24Rounds>,
}

/// An implementation of SipHash 2-4.
///
/// See: <https://131002.net/siphash/>
///
/// SipHash is a general-purpose hashing function: it runs at a good
/// speed (competitive with Spooky and City) and permits strong _keyed_
/// hashing. This lets you key your hash tables from a strong RNG, such as
/// [`rand::os::OsRng`](https://doc.rust-lang.org/rand/rand/os/struct.OsRng.html).
///
/// Although the SipHash algorithm is considered to be generally strong,
/// it is not intended for cryptographic purposes. As such, all
/// cryptographic uses of this implementation are _strongly discouraged_.
pub struct SipHasher(SipHasher24);

impl SipHasher {
    /// Creates a new `SipHasher` with the two initial keys set to 0.
    #[inline]
    #[must_use]
    pub fn new() -> SipHasher {
        SipHasher::new_with_keys(0, 0)
    }

    /// Creates a `SipHasher` that is keyed off the provided keys.
    #[inline]
    #[must_use]
    pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher {
        SipHasher(SipHasher24 { hasher: Hasher::<Sip24Rounds>::new_with_keys(key0, key1) })
    }
}

impl SipHasher13 {
    /// Creates a new `SipHasher13` with the two initial keys set to 0.
    #[inline]
    pub fn new() -> SipHasher13 {
        SipHasher13::new_with_keys(0, 0)
    }

    /// Creates a `SipHasher13` that is keyed off the provided keys.
    #[inline]
    pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher13 {
        SipHasher13 { hasher: Hasher::<Sip13Rounds>::new_with_keys(key0, key1) }
    }
}

impl<S: Sip> Hasher<S> {
    #[inline]
    fn new_with_keys(key0: u64, key1: u64) -> Hasher<S> {
        let mut state = Hasher {
            k0: key0,
            k1: key1,
            length: 0,
            state: State { v0: 0, v1: 0, v2: 0, v3: 0 },
            tail: 0,
            ntail: 0,
            _marker: PhantomData,
        };
        state.reset();
        state
    }

    #[inline]
    fn reset(&mut self) {
        self.length = 0;
        self.state.v0 = self.k0 ^ 0x736f6d6570736575;
        self.state.v1 = self.k1 ^ 0x646f72616e646f6d;
        self.state.v2 = self.k0 ^ 0x6c7967656e657261;
        self.state.v3 = self.k1 ^ 0x7465646279746573;
        self.ntail = 0;
    }
}

impl HasherTrait for SipHasher {
    #[inline]
    fn write(&mut self, msg: &[u8]) {
        self.0.hasher.write(msg)
    }

    #[inline]
    fn finish(&self) -> u64 {
        self.0.hasher.finish()
    }
}

impl HasherTrait for SipHasher13 {
    #[inline]
    fn write(&mut self, msg: &[u8]) {
        self.hasher.write(msg)
    }

    #[inline]
    fn finish(&self) -> u64 {
        self.hasher.finish()
    }
}

impl<S: Sip> HasherTrait for Hasher<S> {
    // Note: no integer hashing methods (`write_u*`, `write_i*`) are defined
    // for this type. We could add them, copy the `short_write` implementation
    // in librustc_data_structures/sip128.rs, and add `write_u*`/`write_i*`
    // methods to `SipHasher`, `SipHasher13`, and `DefaultHasher`. This would
    // greatly speed up integer hashing by those hashers, at the cost of
    // slightly slowing down compile speeds on some benchmarks. See #69152 for
    // details.
    #[inline]
    fn write(&mut self, msg: &[u8]) {
        let length = msg.len();
        self.length += length;

        let mut needed = 0;

        if self.ntail != 0 {
            needed = 8 - self.ntail;
            // SAFETY: `cmp::min(length, needed)` is guaranteed to not be over `length`
            self.tail |= unsafe { u8to64_le(msg, 0, cmp::min(length, needed)) } << (8 * self.ntail);
            if length < needed {
                self.ntail += length;
                return;
            } else {
                self.state.v3 ^= self.tail;
                S::c_rounds(&mut self.state);
                self.state.v0 ^= self.tail;
                self.ntail = 0;
            }
        }

        // Buffered tail is now flushed, process new input.
        let len = length - needed;
        let left = len & 0x7; // len % 8

        let mut i = needed;
        while i < len - left {
            // SAFETY: because `len - left` is the biggest multiple of 8 under
            // `len`, and because `i` starts at `needed` where `len` is `length - needed`,
            // `i + 8` is guaranteed to be less than or equal to `length`.
            let mi = unsafe { load_int_le!(msg, i, u64) };

            self.state.v3 ^= mi;
            S::c_rounds(&mut self.state);
            self.state.v0 ^= mi;

            i += 8;
        }

        // SAFETY: `i` is now `needed + len.div_euclid(8) * 8`,
        // so `i + left` = `needed + len` = `length`, which is by
        // definition equal to `msg.len()`.
        self.tail = unsafe { u8to64_le(msg, i, left) };
        self.ntail = left;
    }

    #[inline]
    fn finish(&self) -> u64 {
        let mut state = self.state;

        let b: u64 = ((self.length as u64 & 0xff) << 56) | self.tail;

        state.v3 ^= b;
        S::c_rounds(&mut state);
        state.v0 ^= b;

        state.v2 ^= 0xff;
        S::d_rounds(&mut state);

        state.v0 ^ state.v1 ^ state.v2 ^ state.v3
    }
}

@philberty
Copy link
Member Author

Thanks so much for doing this testing @bjorn3

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants