-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplainnet_cifar10.py
108 lines (73 loc) · 3.28 KB
/
plainnet_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, Sequential
from keras.initializers import VarianceScaling, Orthogonal
class BasicBlock(layers.Layer):
def __init__(self, filter_num, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = layers.Conv2D(filter_num, (3,3), strides=stride,
kernel_initializer=VarianceScaling(),
kernel_regularizer=keras.regularizers.l2(
0.0005),
padding='same')
self.bn1 = layers.BatchNormalization()
self.relu = layers.Activation('relu')
self.conv2 = layers.Conv2D(filter_num, (3, 3), strides=1,
kernel_initializer=VarianceScaling(),
kernel_regularizer=keras.regularizers.l2(
0.0005),
padding='same')
self.bn2 = layers.BatchNormalization()
def call(self, inputs, training=None):
out = self.conv1(inputs)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
output = tf.nn.relu(out)
return output
class PlainNet(keras.Model):
def __init__(self, layer_dims, num_classes=10): #[[0], [1], [2]]
super(PlainNet, self).__init__()
self.stem = Sequential([layers.Conv2D(16, (3, 3), strides=2,
padding='same',
kernel_initializer=VarianceScaling(),
kernel_regularizer=
keras.regularizers.l2(0.0005)),
layers.BatchNormalization(),
layers.Activation('relu')])
self.layer1 = self.build_plablock(16, layer_dims[0])
self.layer2 = self.build_plablock(32, layer_dims[1], stride=2)
self.layer3 = self.build_plablock(64, layer_dims[2], stride=2)
#output: [b, 64, h, w] => [b, 512]
self.avgpool = layers.GlobalAveragePooling2D()
# [b, 64] => [b, num_classes]
self.fc = layers.Dense(num_classes,
kernel_regularizer=
keras.regularizers.l2(0.0005))
def call(self, inputs, training=None):
x = self.stem(inputs)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
#[b,c]
x = self.avgpool(x)
#[b,num_classes]
x = self.fc(x)
return x
def build_plablock(self, filter_num, blocks, stride=1):
pla_blocks = Sequential()
pla_blocks.add(BasicBlock(filter_num, stride))
for _ in range(1, blocks):
pla_blocks.add(BasicBlock(filter_num, stride=1))
return pla_blocks
def plainnet20():
return PlainNet([3, 3, 3])
def plainnet32():
return PlainNet([5, 5, 5])
def plainnet44():
return PlainNet([7, 7, 7])
def plainnet56():
return PlainNet([9, 9, 9])
def plainnet110():
return PlainNet([18, 18, 18])