forked from 3b1b/manim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
365 lines (297 loc) · 9.92 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import numpy as np
import itertools as it
import operator as op
from PIL import Image
from colour import Color
import random
import inspect
import string
import re
from constants import *
def compass_directions(n = 4, start_vect = UP):
angle = 2*np.pi/n
return [
rotate_vector(start_vect, k*angle)
for k in range(n)
]
def bezier(points):
n = len(points) - 1
return lambda t : sum([
((1-t)**(n-k))*(t**k)*choose(n, k)*point
for point, k in zip(points, it.count())
])
def remove_list_redundancies(l):
"""
Used instead of lsit(set(l)) to maintain order
"""
return sorted(list(set(l)), lambda a, b : l.index(a) - l.index(b))
def list_update(l1, l2):
"""
Used instead of list(set(l1).update(l2)) to maintain order,
making sure duplicates are removed from l1, not l2.
"""
return filter(lambda e : e not in l2, l1) + list(l2)
def all_elements_are_instances(iterable, Class):
return all(map(lambda e : isinstance(e, Class), iterable))
def adjascent_pairs(objects):
return zip(objects, list(objects[1:])+[objects[0]])
def complex_to_R3(complex_num):
return np.array((complex_num.real, complex_num.imag, 0))
def tuplify(obj):
try:
return tuple(obj)
except:
return (obj,)
def instantiate(obj):
"""
Useful so that classes or instance of those classes can be
included in configuration, which can prevent defaults from
getting created during compilation/importing
"""
return obj() if isinstance(obj, type) else obj
def get_all_descendent_classes(Class):
awaiting_review = [Class]
result = []
while awaiting_review:
Child = awaiting_review.pop()
awaiting_review += Child.__subclasses__()
result.append(Child)
return result
def filtered_locals(local_args):
result = local_args.copy()
ignored_local_args = ["self", "kwargs"]
for arg in ignored_local_args:
result.pop(arg, local_args)
return result
def digest_config(obj, kwargs, local_args = {}):
"""
Sets init args and DEFAULT_CONFIG values as local variables
"""
### Assemble list of DEFAULT_CONFIGs from all super classes
classes_in_heirarchy = [obj.__class__]
default_configs = []
while len(classes_in_heirarchy) > 0:
Class = classes_in_heirarchy.pop()
classes_in_heirarchy += Class.__bases__
if hasattr(Class, "DEFAULT_CONFIG"):
default_configs.append(Class.DEFAULT_CONFIG)
#Order matters a lot here, first dicts have higher priority
all_dicts = [kwargs, filtered_locals(local_args), obj.__dict__]
all_dicts += default_configs
item_lists = reversed([d.items() for d in all_dicts])
obj.__dict__ = dict(reduce(op.add, item_lists))
def digest_locals(obj):
caller_locals = inspect.currentframe().f_back.f_locals
obj.__dict__.update(filtered_locals(caller_locals))
def interpolate(start, end, alpha):
return (1-alpha)*start + alpha*end
def center_of_mass(points):
points = [np.array(point).astype("float") for point in points]
return sum(points) / len(points)
def choose(n, r):
if n < r: return 0
if r == 0: return 1
denom = reduce(op.mul, xrange(1, r+1), 1)
numer = reduce(op.mul, xrange(n, n-r, -1), 1)
return numer//denom
def is_on_line(p0, p1, p2, threshold = 0.01):
"""
Returns true of p0 is on the line between p1 and p2
"""
p0, p1, p2 = map(lambda tup : np.array(tup[:2]), [p0, p1, p2])
p1 -= p0
p2 -= p0
return abs((p1[0] / p1[1]) - (p2[0] / p2[1])) < threshold
def intersection(line1, line2):
"""
A "line" should come in the form [(x0, y0), (x1, y1)] for two
points it runs through
"""
p0, p1, p2, p3 = map(
lambda tup : np.array(tup[:2]),
[line1[0], line1[1], line2[0], line2[1]]
)
p1, p2, p3 = map(lambda x : x - p0, [p1, p2, p3])
transform = np.zeros((2, 2))
transform[:,0], transform[:,1] = p1, p2
if np.linalg.det(transform) == 0: return
inv = np.linalg.inv(transform)
new_p3 = np.dot(inv, p3.reshape((2, 1)))
#Where does line connecting (0, 1) to new_p3 hit x axis
x_intercept = new_p3[0] / (1 - new_p3[1])
result = np.dot(transform, [[x_intercept], [0]])
result = result.reshape((2,)) + p0
return result
def random_color():
return random.choice(PALETTE)
################################################
def straight_path(start_points, end_points, alpha):
return interpolate(start_points, end_points, alpha)
def path_along_arc(arc_angle):
"""
If vect is vector from start to end, [vect[:,1], -vect[:,0]] is
perpendicualr to vect in the left direction.
"""
if arc_angle == 0:
return straight_path
def path(start_points, end_points, alpha):
vects = end_points - start_points
centers = start_points + 0.5*vects
if arc_angle != np.pi:
for i, b in [(0, -1), (1, 1)]:
centers[:,i] += 0.5*b*vects[:,1-i]/np.tan(arc_angle/2)
return centers + np.dot(
start_points-centers,
np.transpose(rotation_about_z(alpha*arc_angle))
)
return path
def clockwise_path():
return path_along_arc(-np.pi)
def counterclockwise_path():
return path_along_arc(np.pi)
################################################
def to_cammel_case(name):
return "".join([
filter(
lambda c : c not in string.punctuation + string.whitespace, part
).capitalize()
for part in name.split("_")
])
def initials(name, sep_values = [" ", "_"]):
return "".join([
(s[0] if s else "")
for s in re.split("|".join(sep_values), name)
])
def cammel_case_initials(name):
return filter(lambda c : c.isupper(), name)
################################################
def drag_pixels(frames):
curr = frames[0]
new_frames = []
for frame in frames:
curr += (curr == 0) * np.array(frame)
new_frames.append(np.array(curr))
return new_frames
def invert_image(image):
arr = np.array(image)
arr = (255 * np.ones(arr.shape)).astype(arr.dtype) - arr
return Image.fromarray(arr)
def streth_array_to_length(nparray, length):
curr_len = len(nparray)
if curr_len > length:
raise Warning("Trying to stretch array to a length shorter than its own")
indices = np.arange(length)/ float(length)
indices *= curr_len
return nparray[indices.astype('int')]
def make_even(iterable_1, iterable_2):
list_1, list_2 = list(iterable_1), list(iterable_2)
length = max(len(list_1), len(list_2))
return (
[list_1[(n * len(list_1)) / length] for n in xrange(length)],
[list_2[(n * len(list_2)) / length] for n in xrange(length)]
)
def make_even_by_cycling(iterable_1, iterable_2):
length = max(len(iterable_1), len(iterable_2))
cycle1 = it.cycle(iterable_1)
cycle2 = it.cycle(iterable_2)
return (
[cycle1.next() for x in range(length)],
[cycle2.next() for x in range(length)]
)
### Alpha Functions ###
def sigmoid(x):
return 1.0/(1 + np.exp(-x))
def smooth(t, inflection = 10.0):
error = sigmoid(-inflection / 2)
return (sigmoid(inflection*(t - 0.5)) - error) / (1 - 2*error)
def rush_into(t):
return 2*smooth(t/2.0)
def rush_from(t):
return 2*smooth(t/2.0+0.5) - 1
def slow_into(t):
return np.sqrt(1-(1-t)*(1-t))
def there_and_back(t, inflection = 10.0):
new_t = 2*t if t < 0.5 else 2*(1 - t)
return smooth(new_t, inflection)
def not_quite_there(func = smooth, proportion = 0.7):
def result(t):
return proportion*func(t)
return result
def wiggle(t, wiggles = 2):
return there_and_back(t) * np.sin(wiggles*np.pi*t)
def squish_rate_func(func, a = 0.4, b = 0.6):
def result(t):
if t < a:
return func(0)
elif t > b:
return func(1)
else:
return func((t-a)/(b-a))
return result
### Functional Functions ###
def composition(func_list):
"""
func_list should contain elements of the form (f, args)
"""
return reduce(
lambda (f1, args1), (f2, args2) : (lambda x : f1(f2(x, *args2), *args1)),
func_list,
lambda x : x
)
def remove_nones(sequence):
return filter(lambda x : x, sequence)
#Matrix operations
def thick_diagonal(dim, thickness = 2):
row_indices = np.arange(dim).repeat(dim).reshape((dim, dim))
col_indices = np.transpose(row_indices)
return (np.abs(row_indices - col_indices)<thickness).astype('uint8')
def rotation_matrix(angle, axis):
"""
Rotation in R^3 about a specified axess of rotation.
"""
about_z = rotation_about_z(angle)
z_to_axis = z_to_vector(axis)
axis_to_z = np.linalg.inv(z_to_axis)
return reduce(np.dot, [z_to_axis, about_z, axis_to_z])
def rotation_about_z(angle):
return [
[np.cos(angle), -np.sin(angle), 0],
[np.sin(angle), np.cos(angle), 0],
[0, 0, 1]
]
def z_to_vector(vector):
"""
Returns some matrix in SO(3) which takes the z-axis to the
(normalized) vector provided as an argument
"""
norm = np.linalg.norm(vector)
if norm == 0:
return np.identity(3)
v = np.array(vector) / norm
phi = np.arccos(v[2])
if any(v[:2]):
#projection of vector to {x^2 + y^2 = 1}
axis_proj = v[:2] / np.linalg.norm(v[:2])
theta = np.arccos(axis_proj[0])
if axis_proj[1] < 0:
theta = -theta
else:
theta = 0
phi_down = np.array([
[np.cos(phi), 0, np.sin(phi)],
[0, 1, 0],
[-np.sin(phi), 0, np.cos(phi)]
])
return np.dot(rotation_about_z(theta), phi_down)
def rotate_vector(vector, angle, axis = OUT):
return np.dot(rotation_matrix(angle, axis), vector)
def angle_between(v1, v2):
return np.arccos(np.dot(
v1 / np.linalg.norm(v1),
v2 / np.linalg.norm(v2)
))
def angle_of_vector(vector):
"""
Returns polar coordinate theta when vector is project on xy plane
"""
return np.log(complex(*vector[:2])).imag