-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_ENS.py
163 lines (137 loc) · 5.76 KB
/
test_ENS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import sys
import pprint
import random
import time
import tqdm
import logging
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import torch.distributed as dist
import losses
import models
import datasets
import lib.utils as utils
from lib.utils import AverageMeter
from optimizer.optimizer import Optimizer
from evaluation.evaler_ENS import Evaler
from scorer.scorer import Scorer
from lib.config import cfg, cfg_from_file
class Tester(object):
def __init__(self, args):
super(Tester, self).__init__()
self.args = args
self.device = torch.device("cuda")
self.setup_logging()
self.setup_network()
self.evaler = Evaler(
eval_ids = cfg.DATA_LOADER.VAL_ID,
s3d_feats = cfg.DATA_LOADER.VAL_S3D_FEATS,
s3d_logits = cfg.DATA_LOADER.VAL_S3D_LOGITS,
res152_feats = cfg.DATA_LOADER.VAL_RES152_FEATS,
res152_logits = cfg.DATA_LOADER.VAL_RES152_LOGITS,
eval_annfile = cfg.INFERENCE.VAL_ANNFILE,
test = args.test
)
def setup_logging(self):
self.logger = logging.getLogger(cfg.LOGGER_NAME)
self.logger.setLevel(logging.INFO)
ch = logging.StreamHandler(stream=sys.stdout)
ch.setLevel(logging.INFO)
formatter = logging.Formatter("[%(levelname)s: %(asctime)s] %(message)s")
ch.setFormatter(formatter)
self.logger.addHandler(ch)
if not os.path.exists(cfg.ROOT_DIR):
os.makedirs(cfg.ROOT_DIR)
fh = logging.FileHandler(os.path.join(cfg.ROOT_DIR, cfg.LOGGER_NAME + '.txt'))
fh.setLevel(logging.INFO)
fh.setFormatter(formatter)
self.logger.addHandler(fh)
def parse_bool(self,str):
if(str == 'true'):
return True
else:
return False
def setup_network(self):
model_all = []
#selected_index = [0,2,4,5,6,8,9,10,11] for all
selected_index = [0,2,4,5,6,8,9,10,11] #selected_index = [0,1,2,3,4,5,6,7] best for old ens_models_final; [2,8,9,10] for 0706 models
model_list = [599,595,595,589,587,582,580,578,606,606,600,599]
pos_list = ['false','true','false','true','false','true','false','true','true','false','true','true']
tag_list = ['true','true','false','false','false','false','false','false','true','false','true','true']
# selected_index = [0, 1, 2, 3]
# model_list = [606,606,600,595,599,595]
# pos_list = ['true','false','true','false','false','true']
# tag_list = ['true','false','true','false','true','true']
for i in selected_index:
model = models.create('XLANV', self.parse_bool(pos_list[i]),self.parse_bool(tag_list[i]))
self.model = torch.nn.DataParallel(model).cuda()
self.model.load_state_dict(
torch.load(self.snapshot_path("caption_model", model_list[i], pos_list[i], tag_list[i]),
map_location=lambda storage, loc: storage), strict=False
)
model_all.append(model)
self.model = models.create('XLANV_ENS',model_all,None).cuda()
def make_kwargs(self, indices, input_ids_all, input_seq, target_seq, s3d_feats, s3d_mask, res152_feats, res152_mask, tag_ids, tag_mask, aligned):
seq_mask = (input_seq > 0).type(torch.LongTensor).to(self.device)
seq_mask[:,0] += 1
seq_mask_sum = seq_mask.sum(-1)
max_len = int(seq_mask_sum.max())
input_seq = input_seq[:, 0:max_len].contiguous()
target_seq = target_seq[:, 0:max_len].contiguous()
tag_ids = tag_ids.contiguous()
tag_mask = tag_mask.contiguous()
kwargs = {
cfg.PARAM.INDICES: indices,
cfg.PARAM.INPUT_IDS: input_ids_all,
cfg.PARAM.INPUT_SENT: input_seq,
cfg.PARAM.TARGET_SENT: target_seq,
cfg.PARAM.S3D_FEATS: s3d_feats,
cfg.PARAM.S3D_FEATS_MASK: s3d_mask,
cfg.PARAM.RES152_FEATS: res152_feats,
cfg.PARAM.RES152_FEATS_MASK: res152_mask,
cfg.PARAM.TAG_IDS: tag_ids,
cfg.PARAM.TAG_MASK: tag_mask,
cfg.PARAM.ALIGNED: aligned
}
return kwargs
def eval(self):
res, results = self.evaler(self.model, 'test_ENS' )
self.logger.info('######## ENS models ########')
if(res is not None):
self.logger.info(str(res))
else:
with open('upload_results/0704/caps_models_general.txt','w') as f:
for i in range(len(results)):
imgid = str(results[i][cfg.INFERENCE.ID_KEY])
cap = results[i][cfg.INFERENCE.CAP_KEY]
f.write(imgid+' '+cap+'\n')
self.logger.info('Evaluation Ends')
def snapshot_path(self, name, epoch, pos, tag):
snapshot_folder = '../ens_models_final'
#snapshot_folder = '../0706-ens'
if(tag == 'false'):
return os.path.join(snapshot_folder, name + '_' + str(epoch) + '_' + pos + '.pth')
else:
return os.path.join(snapshot_folder, name + '_' + str(epoch) + '_' + pos + '_' + tag +'.pth')
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Image Captioning')
parser.add_argument("--test", type=int, default=0)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
print('Called with args:')
print(args)
if(args.test == 0):
cfg_from_file(os.path.join('config_test_msrvtt.yml'))
else:
cfg_from_file(os.path.join('config_test.yml'))
tester = Tester(args)
tester.eval()