-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
147 lines (121 loc) · 4.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch as tr
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import torch.optim as opt
import pandas as pd
import numpy as np
import torchvision
from torch.autograd import Variable
import gc
import torch.nn.utils as utils
from sklearn.metrics import log_loss
import time
import sys
from config import *
from model.model_train import *
from model.TextCNN import TextCNN
from model.TextRNN import TextRNN
from model.Inception import *
from model.interactive_attention import DA
from model.self_attention import AttendRNN
from model.ABCNN import ABCNN
train_embed=np.load('data/train_embed4.npy')
test_embed=np.load('data/test_embed4.npy')
labels=np.load('data/train_labels4.npy')
val_fold=5
stacking=True
device = tr.device('cuda')
use_tradition_feat=False
if use_tradition_feat:
print ('using traiditional feature')
train_sta=np.load('data/train_tradition_feat2.npy')
test_sta=np.load('data/test_tradition_feat2.npy')
sta_feat=np.concatenate((train_sta,test_sta),axis=0)
print (sta_feat.shape)
train_idx=np.zeros((train_embed.shape[0],2,1),dtype=np.int)
for i in range(train_embed.shape[0]):
train_idx[i]=[[i],[i]]
train_embed=np.concatenate((train_embed,train_idx),axis=2)
test_idx=np.zeros((test_embed.shape[0],2,1),dtype=np.int)
for i in range(test_embed.shape[0]):
test_idx[i]=[[i+train_embed.shape[0]],[i+train_embed.shape[0]]]
test_embed=np.concatenate((test_embed,test_idx),axis=2)
#models={'ABCNN':ABCNN}
#models={'DA':DA}
#models={'TextCNN':TextCNN}
#models={'TextRNN':TextRNN}
#models={'AttendRNN':AttendRNN}
#models={'CNN_inception':CNN_inception}
models={'DA':DA,
'AttendRNN':AttendRNN,
'ABCNN':ABCNN,
'CNN_inception':CNN_inception,
'TextCNN':TextCNN,
'TextRNN':TextRNN
}
parameter={'AttendRNN':AR_hyparameter,'DA':DA_hyparameter,'CNN_inception':inception_hyparameter,
'TextCNN':CNN_hyparameter,'TextRNN':RNN_hyparameter,'ABCNN':CNN_hyparameter}
com_arg=param()
x_test=tr.from_numpy(test_embed).long().to(device)
for runseed in [1000,2001,3000,4000,5000,5555,6666,7777,8888,9999]:
np.random.seed(runseed)
r1=(np.random.uniform(0,1,train_embed.shape[0])*5).astype(int)
for name,model in models.items():
print (name,runseed)
arg=parameter[name]()
print (arg.weight_decay)
print (arg.doc_length)
f = open('checkpoint/log.txt','a')
f.write('\n'+name+'%d'%runseed+'\n')
f.close()
cv_score=0.0
stacking_result=[]
for v in range(val_fold):##5 means cv,1 means no cv
print ('now training fold %d'%v)
gc.collect()
filter_t=(r1!=v)
filter_v=(r1==v)
x_train , y_train = tr.from_numpy(train_embed[filter_t]).long().to(device),tr.from_numpy(labels[filter_t]).float().to(device)
x_val , y_val = tr.from_numpy(train_embed[filter_v]).long().to(device),tr.from_numpy(labels[filter_v]).float().to(device)
print (x_train.shape[0],x_val.shape[0])
tr.manual_seed(runseed)
if use_tradition_feat:
net=model(arg,sta_feat).to(device)
else:
net=model(arg).to(device)
opter=net.get_opter(arg.lr1,arg.lr2)
criterion = nn.BCELoss(size_average = False)
net_train.fit(x_train,y_train,net=net,opter=opter,criterion=criterion,batch_size=100,
num_epoch=arg.epoch,batch_decay=45,x_val=x_val,y_val=y_val,name=name)
y_pred=net_train.predict_proba(net,x_val)
cv_score+=log_loss(y_val,y_pred)
if stacking:
stacking_result.extend(list(y_pred))
y_pred=net_train.predict_proba(net,x_test)
filename='submit/%s_fold_%d_submit.txt'%(name,v)
np.savetxt(filename,y_pred)
f = open('checkpoint/log.txt','a')
f.write("\n")
f.close()
print ("cv_score is ",cv_score/5)
f = open('checkpoint/log.txt','a')
f.write("cv_score is %f\n"%(cv_score/5))
f.close()
if use_tradition_feat:
filename='stacking/%s_val_result_%d_withsta.txt'%(name,runseed)
else:
filename='stacking/%s_val_result_%d.txt'%(name,runseed)
np.savetxt(filename,np.array(stacking_result))
print ('saving stacking files in the dir stacking')
y_pred=np.zeros(test_embed.shape[0])
for v in range(5):
filename='submit/%s_fold_%d_submit.txt'%(name,v)
y_pred+=np.loadtxt(filename)
y_pred/=5
print (y_pred.mean())
if use_tradition_feat:
filename='submit/%s_pred_%d_withsta.txt'%(name,runseed)
else:
filename='submit/%s_pred_%d.txt'%(name,runseed)
np.savetxt(filename,y_pred)