-
Notifications
You must be signed in to change notification settings - Fork 1
/
models3.py
253 lines (214 loc) · 7.92 KB
/
models3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""Collection of Keras models for hierarchical GANs."""
# Imports
from keras.layers.core import Dense, Reshape, RepeatVector, Lambda, Dropout
from keras.layers import Input, merge
from keras.models import Model
from keras.layers.wrappers import TimeDistributed
from keras.layers.recurrent import LSTM
from keras.layers.normalization import BatchNormalization
from keras.regularizers import l2
from keras import backend as K
# Local imports
import layers3 as layers
# Generators
def generator(n_nodes=20,
noise_dim=100,
embedding_dim=100,
hidden_dim=20,
batch_size=64):
"""
Generator network.
Parameters
----------
n_nodes: int
number of nodes in the tree providing context input
n_nodes: int
number of nodes in the output tree
noise_dim: int
dimensionality of noise input
embedding_dim: int
dimensionality of embedding for context input
Returns
-------
geometry_model: keras model object
model of geometry generator
conditional_geometry_model: keras model object
model of geometry generator conditioned on morphology
morphology_model: keras model object
model of morphology generator
conditional_morphology_model: keras model object
model of morphology generator conditioned on geometry
"""
# Generate noise input
noise_input = Input(shape=(1, noise_dim), name='noise_input')
# ---------------
# Geometry model
# ---------------
# Dense
#geometry_hidden_dim = (n_nodes - 1) * 20
geometry_hidden1 = Dense(100)(noise_input)
geometry_hidden2 = Dense(100)(geometry_hidden1)
geometry_hidden3 = Dense(50)(geometry_hidden2)
geometry_hidden4 = Dense(3 * (n_nodes - 1))(geometry_hidden3)
#geometry_hidden3 = BatchNormalization()(geometry_hidden2)
# Reshape
geometry_reshaped = \
Reshape(target_shape=(n_nodes - 1, 3))(geometry_hidden4)
geometry_output = geometry_reshaped
# Assign inputs and outputs of the model
geometry_model = Model(input=[noise_input],
output=[geometry_output],
name="Geometry")
# -----------------
# Morphology model
# -----------------
# Dense
#morphology_hidden_dim = n_nodes * 5
morphology_hidden1 = Dense(100)(noise_input)
morphology_hidden2 = Dense(100)(morphology_hidden1)
# morphology_hidden2 = BatchNormalization()(morphology_hidden2)
morphology_hidden3 = Dense(n_nodes * (n_nodes - 1),
activation='linear')(morphology_hidden2)
# Reshape
morphology_reshaped = \
Reshape(target_shape=(n_nodes - 1, n_nodes))(morphology_hidden3)
lambda_args = {'n_nodes': n_nodes, 'batch_size': batch_size}
morphology_output = \
Lambda(layers.masked_softmax,
output_shape=(n_nodes - 1, n_nodes),
arguments=lambda_args)(morphology_reshaped)
# Assign inputs and outputs of the model
morphology_model = \
Model(input=[noise_input],
output=[morphology_output],
name="Morphology")
geometry_model.summary()
morphology_model.summary()
return geometry_model, morphology_model
# Discriminator
def discriminator(n_nodes=20,
embedding_dim=100,
hidden_dim=50,
batch_size=64,
train_loss='wasserstein_loss'):
"""
Discriminator network.
Parameters
----------
n_nodes: int
number of nodes in the tree
embedding_dim: int
dimensionality of embedding for context input
hidden_dim: int
dimensionality of hidden layers
Returns
-------
discriminator_model: keras model object
model of discriminator
"""
geometry_input = Input(shape=(n_nodes - 1, 3))
morphology_input = Input(shape=(n_nodes - 1, n_nodes))
# # Joint embedding of geometry and morphology
# embedding = layers.embedder(geometry_input,
# morphology_input,
# n_nodes=n_nodes,
# embedding_dim=embedding_dim)
# Extract features from geometry and morphology
lambda_args = {'n_nodes': n_nodes, 'batch_size': batch_size}
n_features = 5 * n_nodes + 6
both_inputs = merge([geometry_input,
morphology_input], mode='concat')
embedding = \
Lambda(layers.feature_extractor,
output_shape=(n_nodes, n_features),
arguments=lambda_args)([both_inputs])
embedding = \
Reshape(target_shape=(1, n_nodes * n_features))(embedding)
# --------------------
# Discriminator model
# -------------------=
discriminator_hidden1 = Dense(200)(embedding)
# discriminator_hidden1 = Dropout(0.1)(discriminator_hidden1)
discriminator_hidden2 = Dense(50)(discriminator_hidden1)
# discriminator_hidden2 = Dropout(0.1)(discriminator_hidden2)
discriminator_hidden3 = Dense(10)(discriminator_hidden2)
# discriminator_hidden3 = Dropout(0.1)(discriminator_hidden3)
if train_loss == 'wasserstein_loss':
discriminator_output = \
Dense(1, activation='linear')(discriminator_hidden3)
else:
discriminator_output = \
Dense(1, activation='sigmoid')(discriminator_hidden3)
discriminator_model = Model(input=[geometry_input,
morphology_input],
output=[discriminator_output],
name="Discriminator")
discriminator_model.summary()
return discriminator_model
def wasserstein_loss(y_true, y_pred):
"""
Custom loss function for Wasserstein critic.
Parameters
----------
y_true: keras tensor
true labels: -1 for data and +1 for generated sample
y_pred: keras tensor
predicted EM score
"""
return K.mean(y_true * y_pred)
# Discriminator on generators
def discriminator_on_generators(geometry_model,
morphology_model,
discriminator_model,
conditioning_rule='none',
input_dim=100,
n_nodes=20):
"""
Discriminator stacked on the generators.
Parameters
----------
geometry_model: keras model object
model object that generates the geometry
conditional_geometry_model: keras model object
model object that generates the geometry conditioned on morphology
morphology_model: keras model object
model object that generates the morphology
conditional_morphology_model: keras model object
model object that generates the morphology conditioned on geometry
discriminator_model: keras model object
model object for the discriminator
conditioning_rule: str
'mgd': P_w(disc_loss|g,m) P(g|m) P(m)
'gmd': P_w(disc_loss|g,m) P(m|g) P(g)
input_dim: int
dimensionality of noise input
n_nodes: int
number of nodes in the tree providing
prior context input for the generators
n_nodes: int
number of nodes in the output tree
Returns
-------
model: keras model object
model of the discriminator stacked on the generator.
"""
# Inputs
noise_input = Input(shape=(1, input_dim), name='noise_input')
# ------------------
# Generator outputs
# ------------------
if conditioning_rule == 'none':
geometry_output = \
geometry_model([noise_input])
morphology_output = \
morphology_model([noise_input])
# ---------------------
# Discriminator output
# ---------------------
discriminator_output = \
discriminator_model([geometry_output,
morphology_output])
# Stack discriminator on generator
model = Model([noise_input],
[discriminator_output])
return model