-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels2.py
585 lines (523 loc) · 21.3 KB
/
models2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
"""Collection of Keras models for hierarchical GANs."""
# Imports
from keras.layers.core import Dense, Reshape, RepeatVector, Lambda, Dropout
from keras.layers import Input, merge
from keras.models import Model
from keras.layers.wrappers import TimeDistributed
from keras.layers.recurrent import LSTM
from keras.layers.normalization import BatchNormalization
from keras.regularizers import l2
from keras import backend as K
# Local imports
import layers as layers
# Generators
def generator(n_nodes_in=10,
n_nodes_out=20,
noise_dim=100,
embedding_dim=100,
hidden_dim=20,
batch_size=64,
use_context=True):
"""
Generator network.
Parameters
----------
n_nodes_in: int
number of nodes in the tree providing context input
n_nodes_out: int
number of nodes in the output tree
noise_dim: int
dimensionality of noise input
embedding_dim: int
dimensionality of embedding for context input
use_context: bool
if True, use context, else only noise input
Returns
-------
geometry_model: keras model object
model of geometry generator
conditional_geometry_model: keras model object
model of geometry generator conditioned on morphology
morphology_model: keras model object
model of morphology generator
conditional_morphology_model: keras model object
model of morphology generator conditioned on geometry
"""
# Embed contextual information from previous levels
if use_context is True:
prior_geometry_input = \
Input(shape=(n_nodes_in - 1, 3))
prior_morphology_input = \
Input(shape=(n_nodes_in - 1, n_nodes_in))
# prior_embedding = \
# layers.embedder(prior_geometry_input,
# prior_morphology_input,
# n_nodes=n_nodes_in,
# hidden_dim=hidden_dim,
# embedding_dim=embedding_dim)
lambda_args = {'n_nodes': n_nodes_in, 'batch_size': batch_size}
prior_embedding = \
Lambda(layers.feature_extractor,
output_shape=(n_nodes_in, 2 * n_nodes_in + 6),
arguments=lambda_args)([prior_geometry_input,
prior_morphology_input])
prior_embedding = \
Reshape(target_shape=(1, n_nodes_in * (2 * n_nodes_in + 6)))(prior_embedding)
# Generate noise input
noise_input = Input(shape=(1, noise_dim), name='noise_input')
# Geometry and morphology input
geometry_input = Input(shape=(n_nodes_out - 1, 3))
morphology_input = Input(shape=(n_nodes_out - 1, n_nodes_out))
# Concatenate prior context and noise inputs
if use_context is True:
all_common_inputs = merge([prior_embedding,
noise_input], mode='concat')
else:
all_common_inputs = noise_input
# Embed conditional information from current level
geometry_embedding = \
layers.geometry_embedder(geometry_input,
n_nodes=n_nodes_out,
hidden_dim=hidden_dim,
embedding_dim=embedding_dim)
morphology_embedding = \
layers.morphology_embedder(morphology_input,
n_nodes=n_nodes_out,
hidden_dim=hidden_dim,
embedding_dim=embedding_dim)
# ---------------
# Geometry model
# ---------------
# Dense
geometry_hidden_dim = (n_nodes_out - 1) * 3
geometry_hidden1 = Dense(geometry_hidden_dim)(all_common_inputs)
# geometry_hidden1 = BatchNormalization()(geometry_hidden1)
geometry_hidden2 = Dense(geometry_hidden_dim)(geometry_hidden1)
# geometry_hidden2 = BatchNormalization()(geometry_hidden2)
# Reshape
geometry_reshaped = \
Reshape(target_shape=(n_nodes_out - 1, 3))(geometry_hidden2)
# # LSTM
# geometry_lstm1 = \
# LSTM(input_dim=3,
# input_length=n_nodes_out - 1,
# output_dim=3,
# W_regularizer=l2(0.1),
# U_regularizer=l2(0.1),
# return_sequences=True)(geometry_reshaped)
# # geometry_lstm1 = BatchNormalization()(geometry_lstm1)
#
# geometry_lstm2 = \
# LSTM(input_dim=3,
# input_length=n_nodes_out - 1,
# output_dim=3,
# W_regularizer=l2(0.1),
# U_regularizer=l2(0.1),
# return_sequences=True)(geometry_lstm1)
# # geometry_lstm2 = BatchNormalization()(geometry_lstm2)
#
# # TimeDistributed
# geometry_output = \
# TimeDistributed(Dense(input_dim=3,
# output_dim=3,
# W_regularizer=l2(0.01),
# activation='linear'))(geometry_lstm2)
geometry_output = geometry_reshaped
# Assign inputs and outputs of the model
if use_context is True:
geometry_model = Model(input=[prior_geometry_input,
prior_morphology_input,
noise_input],
output=[geometry_output])
else:
geometry_model = Model(input=[noise_input],
output=[geometry_output])
# ---------------------------
# Conditional Geometry model
# ---------------------------
# Concatenate common inputs with specific input
all_geometry_inputs = merge([all_common_inputs,
morphology_embedding])
# Dense
geometry_hidden_dim = (n_nodes_out - 1) * 3
geometry_hidden1 = Dense(geometry_hidden_dim)(all_geometry_inputs)
# geometry_hidden1 = BatchNormalization()(geometry_hidden1)
geometry_hidden2 = Dense(geometry_hidden_dim)(geometry_hidden1)
# geometry_hidden2 = BatchNormalization()(geometry_hidden2)
# Reshape
geometry_reshaped = \
Reshape(target_shape=(n_nodes_out - 1, 3))(geometry_hidden2)
# # LSTM
# geometry_lstm1 = \
# LSTM(input_dim=3,
# input_length=n_nodes_out - 1,
# output_dim=3,
# W_regularizer=l2(0.1),
# U_regularizer=l2(0.1),
# return_sequences=True)(geometry_reshaped)
# # geometry_lstm1 = BatchNormalization()(geometry_lstm1)
#
# geometry_lstm2 = \
# LSTM(input_dim=3,
# input_length=n_nodes_out - 1,
# output_dim=3,
# W_regularizer=l2(0.1),
# U_regularizer=l2(0.1),
# return_sequences=True)(geometry_lstm1)
# # geometry_lstm2 = BatchNormalization()(geometry_lstm2)
#
# # TimeDistributed
# geometry_output = \
# TimeDistributed(Dense(input_dim=3,
# output_dim=3,
# W_regularizer=l2(0.01),
# activation='linear'))(geometry_lstm2)
geometry_output = geometry_reshaped
# Assign inputs and outputs of the model
if use_context is True:
conditional_geometry_model = \
Model(input=[prior_geometry_input,
prior_morphology_input,
noise_input,
morphology_input],
output=[geometry_output])
else:
conditional_geometry_model = \
Model(input=[noise_input,
morphology_input],
output=[geometry_output])
# -----------------
# Morphology model
# -----------------
# # Dense
# morphology_hidden_dim = hidden_dim * (n_nodes_out - 1)
# morphology_hidden1 = Dense(morphology_hidden_dim)(all_common_inputs)
# morphology_hidden2 = Dense(morphology_hidden_dim)(morphology_hidden1)
#
# # Reshape
# morphology_reshaped = \
# Reshape(target_shape=(n_nodes_out - 1, hidden_dim))(morphology_hidden2)
#
# # LSTM
# morphology_lstm1 = \
# LSTM(input_dim=hidden_dim,
# input_length=n_nodes_out - 1,
# output_dim=hidden_dim,
# W_regularizer=l2(0.1),
# U_regularizer=l2(0.1),
# return_sequences=True)(morphology_reshaped)
# morphology_lstm2 = \
# LSTM(input_dim=hidden_dim,
# input_length=n_nodes_out - 1,
# W_regularizer=l2(0.1),
# U_regularizer=l2(0.1),
# output_dim=hidden_dim,
# return_sequences=True)(morphology_lstm1)
# # TimeDistributed
# morphology_dense = \
# TimeDistributed(Dense(input_dim=hidden_dim,
# output_dim=n_nodes_out,
# W_regularizer=l2(0.01),
# activation='sigmoid'))(morphology_lstm1)
#
# lambda_args = {'n_nodes': n_nodes_out, 'batch_size': batch_size}
# morphology_output = \
# Lambda(layers.masked_softmax,
# output_shape=(n_nodes_out - 1, n_nodes_out),
# arguments=lambda_args)(morphology_dense)
# Dense
morphology_hidden_dim = n_nodes_out * (n_nodes_out - 1)
morphology_hidden1 = Dense(morphology_hidden_dim)(all_common_inputs)
# morphology_hidden1 = BatchNormalization()(morphology_hidden1)
morphology_hidden2 = Dense(morphology_hidden_dim)(morphology_hidden1)
# morphology_hidden2 = BatchNormalization()(morphology_hidden2)
morphology_hidden3 = Dense(n_nodes_out * (n_nodes_out - 1),
activation='linear')(morphology_hidden2)
# Reshape
morphology_reshaped = \
Reshape(target_shape=(n_nodes_out - 1, n_nodes_out))(morphology_hidden3)
lambda_args = {'n_nodes': n_nodes_out, 'batch_size': batch_size}
morphology_output = \
Lambda(layers.masked_softmax,
output_shape=(n_nodes_out - 1, n_nodes_out),
arguments=lambda_args)(morphology_reshaped)
# Assign inputs and outputs of the model
if use_context is True:
morphology_model = \
Model(input=[prior_geometry_input,
prior_morphology_input,
noise_input],
output=[morphology_output])
else:
morphology_model = \
Model(input=[noise_input],
output=[morphology_output])
# -----------------------------
# Conditional morphology model
# -----------------------------
# Concatenate common inputs with specific input
all_morphology_inputs = merge([all_common_inputs,
geometry_embedding])
# # Dense
# morphology_hidden_dim = hidden_dim * (n_nodes_out - 1)
# morphology_hidden1 = Dense(morphology_hidden_dim)(all_morphology_inputs)
# morphology_hidden2 = Dense(morphology_hidden_dim)(morphology_hidden1)
#
# # Reshape
# morphology_reshaped = \
# Reshape(target_shape=(n_nodes_out - 1, hidden_dim))(morphology_hidden2)
#
# # LSTM
# morphology_lstm1 = \
# LSTM(input_dim=hidden_dim,
# input_length=n_nodes_out - 1,
# output_dim=hidden_dim,
# W_regularizer=l2(0.1),
# U_regularizer=l2(0.1),
# return_sequences=True)(morphology_reshaped)
# morphology_lstm2 = \
# LSTM(input_dim=hidden_dim,
# input_length=n_nodes_out - 1,
# output_dim=hidden_dim,
# W_regularizer=l2(0.1),
# U_regularizer=l2(0.1),
# return_sequences=True)(morphology_lstm1)
#
# # TimeDistributed
# morphology_dense = \
# TimeDistributed(Dense(input_dim=hidden_dim,
# output_dim=n_nodes_out,
# W_regularizer=l2(0.01),
# activation='sigmoid'))(morphology_lstm1)
#
# lambda_args = {'n_nodes': n_nodes_out, 'batch_size': batch_size}
# morphology_output = \
# Lambda(layers.masked_softmax,
# output_shape=(n_nodes_out - 1, n_nodes_out),
# arguments=lambda_args)(morphology_dense)
# Dense
morphology_hidden_dim = n_nodes_out * (n_nodes_out - 1)
morphology_hidden1 = Dense(morphology_hidden_dim)(all_morphology_inputs)
# morphology_hidden1 = BatchNormalization()(morphology_hidden1)
morphology_hidden2 = Dense(morphology_hidden_dim)(morphology_hidden1)
# morphology_hidden2 = BatchNormalization()(morphology_hidden2)
morphology_hidden3 = Dense(n_nodes_out * (n_nodes_out - 1),
activation='linear')(morphology_hidden2)
# Reshape
morphology_reshaped = \
Reshape(target_shape=(n_nodes_out - 1, n_nodes_out))(morphology_hidden1)
lambda_args = {'n_nodes': n_nodes_out, 'batch_size': batch_size}
morphology_output = \
Lambda(layers.masked_softmax,
output_shape=(n_nodes_out - 1, n_nodes_out),
arguments=lambda_args)(morphology_reshaped)
# Assign inputs and outputs of the model
if use_context is True:
conditional_morphology_model = \
Model(input=[prior_geometry_input,
prior_morphology_input,
noise_input,
geometry_input],
output=[morphology_output])
else:
conditional_morphology_model = \
Model(input=[noise_input,
geometry_input],
output=[morphology_output])
# geometry_model.summary()
conditional_geometry_model.summary()
morphology_model.summary()
# conditional_morphology_model.summary()
return geometry_model, \
conditional_geometry_model, \
morphology_model, \
conditional_morphology_model
# Discriminator
def discriminator(n_nodes_in=10,
embedding_dim=100,
hidden_dim=50,
batch_size=64,
train_loss='wasserstein_loss'):
"""
Discriminator network.
Parameters
----------
n_nodes_in: int
number of nodes in the tree
embedding_dim: int
dimensionality of embedding for context input
hidden_dim: int
dimensionality of hidden layers
Returns
-------
discriminator_model: keras model object
model of discriminator
"""
geometry_input = Input(shape=(n_nodes_in - 1, 3))
morphology_input = Input(shape=(n_nodes_in - 1, n_nodes_in))
# # Joint embedding of geometry and morphology
# embedding = layers.embedder(geometry_input,
# morphology_input,
# n_nodes=n_nodes_in,
# embedding_dim=embedding_dim)
# Extract features from geometry and morphology
lambda_args = {'n_nodes': n_nodes_in, 'batch_size': batch_size}
both_inputs = merge([geometry_input,
morphology_input], mode='concat')
embedding = \
Lambda(layers.feature_extractor,
output_shape=(n_nodes_in, 2 * n_nodes_in + 6),
arguments=lambda_args)([both_inputs])
embedding = \
Reshape(target_shape=(1, n_nodes_in * (2 * n_nodes_in + 6)))(embedding)
# --------------------
# Discriminator model
# -------------------=
discriminator_hidden1 = Dense(hidden_dim)(embedding)
# discriminator_hidden1 = Dropout(0.1)(discriminator_hidden1)
discriminator_hidden2 = Dense(hidden_dim)(discriminator_hidden1)
# discriminator_hidden2 = Dropout(0.1)(discriminator_hidden2)
discriminator_hidden3 = Dense(hidden_dim)(discriminator_hidden2)
# discriminator_hidden3 = Dropout(0.1)(discriminator_hidden3)
if train_loss == 'wasserstein_loss':
discriminator_output = \
Dense(1, activation='linear')(discriminator_hidden3)
else:
discriminator_output = \
Dense(1, activation='sigmoid')(discriminator_hidden3)
discriminator_model = Model(input=[geometry_input,
morphology_input],
output=[discriminator_output])
discriminator_model.summary()
return discriminator_model
def wasserstein_loss(y_true, y_pred):
"""
Custom loss function for Wasserstein critic.
Parameters
----------
y_true: keras tensor
true labels: -1 for data and +1 for generated sample
y_pred: keras tensor
predicted EM score
"""
return K.mean(y_true * y_pred)
# Discriminator on generators
def discriminator_on_generators(geometry_model,
conditional_geometry_model,
morphology_model,
conditional_morphology_model,
discriminator_model,
conditioning_rule='mgd',
input_dim=100,
n_nodes_in=10,
n_nodes_out=20,
use_context=True):
"""
Discriminator stacked on the generators.
Parameters
----------
geometry_model: keras model object
model object that generates the geometry
conditional_geometry_model: keras model object
model object that generates the geometry conditioned on morphology
morphology_model: keras model object
model object that generates the morphology
conditional_morphology_model: keras model object
model object that generates the morphology conditioned on geometry
discriminator_model: keras model object
model object for the discriminator
conditioning_rule: str
'mgd': P_w(disc_loss|g,m) P(g|m) P(m)
'gmd': P_w(disc_loss|g,m) P(m|g) P(g)
input_dim: int
dimensionality of noise input
n_nodes_in: int
number of nodes in the tree providing
prior context input for the generators
n_nodes_out: int
number of nodes in the output tree
use_context: bool
if True, use context, else only noise input for the generators
Returns
-------
model: keras model object
model of the discriminator stacked on the generator.
"""
# Inputs
if use_context is True:
prior_geometry_input = Input(shape=(n_nodes_in - 1, 3))
prior_morphology_input = Input(shape=(n_nodes_in - 1, n_nodes_in))
noise_input = Input(shape=(1, input_dim), name='noise_input')
# prior_geometry_input = Input(shape=(n_nodes_out - 1, 3))
# prior_morphology_input = Input(shape=(n_nodes_out - 1, n_nodes_in))
# ------------------
# Generator outputs
# ------------------
if conditioning_rule == 'mgd':
# Condition geometry on morphology: P(g|m)P(m)
if use_context is True:
morphology_output = \
morphology_model([prior_geometry_input,
prior_morphology_input,
noise_input])
geometry_output = \
conditional_geometry_model([prior_geometry_input,
prior_morphology_input,
noise_input,
morphology_output])
else:
morphology_output = \
morphology_model([noise_input])
geometry_output = \
conditional_geometry_model([noise_input,
morphology_output])
elif conditioning_rule == 'gmd':
# Condition morphology on geometry: P(m|g)P(g)
if use_context is True:
geometry_output = \
geometry_model([prior_geometry_input,
prior_morphology_input,
noise_input])
morphology_output = \
conditional_morphology_model([prior_geometry_input,
prior_morphology_input,
noise_input,
geometry_output])
else:
geometry_output = \
geometry_model([noise_input])
morphology_output = \
conditional_morphology_model([noise_input,
geometry_output])
elif conditioning_rule == 'none':
# No conditioning
if use_context is True:
geometry_output = \
geometry_model([prior_geometry_input,
prior_morphology_input,
noise_input])
morphology_output = \
morphology_model([prior_geometry_input,
prior_morphology_input,
noise_input])
else:
geometry_output = \
geometry_model([noise_input])
morphology_output = \
morphology_model([noise_input])
# ---------------------
# Discriminator output
# ---------------------
discriminator_output = \
discriminator_model([geometry_output,
morphology_output])
# Stack discriminator on generator
if use_context is True:
model = Model([prior_geometry_input,
prior_morphology_input,
noise_input],
[discriminator_output])
else:
model = Model([noise_input],
[discriminator_output])
return model