-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_Scannet.py
139 lines (110 loc) · 4.79 KB
/
train_Scannet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import sys
import tensorflow as tf
import numpy as np
import cv2 as cv
import matplotlib.cm as cm
from loguru import logger
from tqdm import tqdm
print(os.getcwd())
from time import time
# os.chdir("LoFTR-in-Tensorflow")
from src.loftr.LoFTR_TF import LoFTR
from src.training.supervisionTF import compute_supervision_coarse, compute_supervision_fine
from src.training.loftr_lossTF import LoFTRLoss
from src.training.datasets.load_scannet import import_scannet
from src.loftr.utils.plotting_TF import make_matching_figure
from src.configs.getConfig import giveConfig
# tf.config.run_functions_eagerly(True)
class trainer():
def __init__(self):
self.config,self._config = giveConfig()
self.runningLoss = []
self.learning_rate = 6e-3
self.A_optimizer=tf.keras.optimizers.Adam(learning_rate=6e-4)
self.matcher=LoFTR(config=self._config['loftr'])
self.modelLoss=LoFTRLoss(self._config)
def saveWeights(self,checkpointPath):
self.matcher.save_weights(checkpointPath)
def loadWeights(self,checkpointPath):
self.matcher.load_weights(checkpointPath)
def train_step(self, input, epoch):
'''
data is a dictionary containing
'''
data = input
with tf.GradientTape() as tape:
superVisionData = compute_supervision_coarse(data,self.config)#Ground Truth generation
modelData = self.matcher(superVisionData, training = True)
fineSuperData = compute_supervision_fine(modelData,self.config)
lossData = self.modelLoss(fineSuperData)
grads = tape.gradient(lossData['loss'], self.matcher.trainable_weights, unconnected_gradients='zero')
self.A_optimizer.apply_gradients(zip(grads, self.matcher.trainable_weights))
if (epoch+1)%3==0 and epoch+1<=30:
self.learning_rate/=2
self.A_optimizer.learning_rate.assign(self.learning_rate)
# print("Weights Updated")
return lossData['loss']
def singleTest(self,imagePaths, outPath):
img0_raw = cv.resize(cv.imread(imagePaths[0], cv.IMREAD_GRAYSCALE), (640, 480))
img1_raw = cv.resize(cv.imread(imagePaths[1], cv.IMREAD_GRAYSCALE), (640, 480))
img0 = tf.convert_to_tensor(img0_raw)[None][None]/255
img1 = tf.convert_to_tensor(img1_raw)[None][None]/255
data = {'image0': img0, 'image1': img1}
#Calling the matcher on the current batch
updata = self.matcher(data)
mkpts0 = updata['mkpts0_f'].numpy()
mkpts1 = updata['mkpts1_f'].numpy()
mconf = updata['mconf'].numpy()
color = cm.jet(mconf)
text = [
'LoFTR',
'Matches: {}'.format(len(mkpts0)),
]
make_matching_figure(img0_raw, img1_raw, mkpts0, mkpts1, color, text=text, path=outPath)
def train(train_ds, trainer, epoch: int):
epochLoss = 0.0
for currentBatch in tqdm(train_ds,desc='Running Epoch '+str(epoch+ 1)):
result = trainer.train_step(currentBatch, epoch)
# logger.info(f'running...')
epochLoss+= result
epochLoss = float(tf.math.reduce_sum(epochLoss)/(len(train_ds)))
return epochLoss
def main(epochs):
# initialize tf.distribute.MirroredStrategy
# args.global_batch_size = num_devices * args.batch_size
# initialize TensorBoard summary helper
t1 = time()
npz_dir = './src/training/datasets/scannet/train/'
sens_dir = './src/training/datasets/scannet/scans/'
intrins = './src/training/datasets/scannet/intrinsics.npz'
scenes = import_scannet(npz_dir,sens_dir, intrins, 0.4, 64, 8, 5)
# logger.info(scenes)
t2 = time()
logger.info(f"Data Loaded {len(scenes)} batches in {(t2-t1)/60} minutes")
# scenes = strategy.experimental_distribute_dataset(scenes)
myTrainer = trainer()
# try:
# myTrainer.loadWeights("./weights/big_test/cp_SCANNET_big.ckpt")
# except:
# logger.warning(f'No previous weights to load!')
allLoss = []
for epoch in range(epochs):
logger.info(f'Epoch {epoch + 1:03d}/{epochs:03d}')
start = time()
currentLoss = train(scenes, myTrainer, epoch)
logger.info(f'Current Loss = {currentLoss}')
allLoss.append(currentLoss)
# results = test(args, test_ds, gan, summary, epoch)
end = time()
logger.info(f'Time taken for Epoch {epoch+1} = {(end-start)/60} minutes')
# if epoch % 10 == 0:
# gan.save_checkpoint()
# utils.plot_cycle(plot_ds, gan, summary, epoch)
myTrainer.saveWeights("./weights/undistort_test/scannet_undistorted.ckpt")
print(allLoss)
myTrainer.singleTest(["./other/scene0738_00_frame-000885.jpg",
"./other/scene0738_00_frame-001065.jpg"],"./src/training/figs/matches_miniSCANNET_testing.jpg")
if __name__ == '__main__':
# main(parser.parse_args())
main(100)