Skip to content

Commit ba6c3c9

Browse files
committed
added current M102 WeBWorK course reading html files
1 parent e75f1a1 commit ba6c3c9

File tree

322 files changed

+54929
-0
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

322 files changed

+54929
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,80 @@
1+
<!DOCTYPE html>
2+
<!--Pretty this up-->
3+
4+
<html>
5+
<head>
6+
<title>MAT-101: WeBWorK Quick Reference</title>
7+
<link href="M101webwork.css" rel="stylesheet" type="text/css">
8+
<script type="text/x-mathjax-config">
9+
10+
MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
11+
12+
</script>
13+
<script type="text/javascript"
14+
15+
src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
16+
17+
</script>
18+
</head>
19+
20+
<body>
21+
<h1>MAT-101: WeBWorK Quick Reference</h1>
22+
23+
<h2>Real Numbers</h2>
24+
25+
<ul>
26+
<li>It is generally a good idea to maintain \(3\) to \(5\) decimals of accuracy when submitting answers in <tt>WeBWorK</tt></li>
27+
<li>Type <b>3/7</b> for \( \dfrac{3}{7} \)</li>
28+
<li>Type <b>.375 </b> for \( .375 \)</li>
29+
<li>Type <b>7.25% </b> for \(7.25\% \)</li>
30+
31+
<li></li>
32+
</ul>
33+
34+
<h2>Arithmetic Operations</h2>
35+
<ul>
36+
<li>Type <b>x^2 </b> for \( x^2 \)</li>
37+
</ul>
38+
39+
<h2>Set Operations</h2>
40+
<ul>
41+
<li>Type <b>{1,4,5,6,7,8} </b> for \(\{1,4,5,6,7,8 \} \) in <tt>WeBWorK.</tt> Elements of sets are contained in curly braces.</li>
42+
<li>Type capital <b>U</b> for \(\cup \) the union symbol</li>
43+
<li> Type <b>(-inf,-2]U[1,inf)</b> for \((-\infty, -2]\cup [1,\infty)\)</li>
44+
<li>Type <b>None</b> for empty sets</li>
45+
</ul>
46+
47+
<h2>Intervals</h2>
48+
<ul>
49+
<li>Type <b>[4,inf)</b> for the interval \( [4,\infty )\)</li>
50+
<li>Type <b>(-inf,-4)</b> for the interval \( (-\infty, -4)\)</li>
51+
<li>Type <b>(-inf,inf)</b> for the interval \( (-\infty, \infty)\)</li>
52+
</ul>
53+
54+
<h2>Inequalities</h2>
55+
<ul>
56+
<li>Type the two symbols <b>&gt = </b> together for \(\geq\)</li>
57+
<li>Type the two symbols <b>&lt = </b> together for \(\leq\)</li>
58+
<li>Type <b>-inf &lt x &lt inf</b> for the inequality \(-\infty \lt x \lt \infty\)</li>
59+
<li>Type <b>x &lt = -3</b> for the inequality \(x \leq -3\)</li>
60+
</ul>
61+
62+
<h2>Equations</h2>
63+
<ul>
64+
<li>2 solutions: Type <b>x=7 or x=-7</b></li>
65+
<li>0 solutions: Type <b>No solution</b></li>
66+
</ul>
67+
68+
69+
<H2>Graphs and Lines</H2>
70+
<ul>
71+
<li>Points in the plane are entered as <b>(#,#)=(horizontal #, vertical #)=(independent, dependent)=(predictor, response)</b></li>
72+
<li>For the first quadrant, type <b>Q1</b>, for the second quadrant, type <b>Q2</b>, etc.</li>
73+
<li>Type <b>undefined</b> for the slope of a vertical line in <tt>WeBWorK</tt></li>
74+
</ul>
75+
76+
77+
78+
79+
</body>
80+
</html>

M101_Reading_HTML/M101webwork.css

+47
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,47 @@
1+
@charset "utf-8";
2+
/* CSS Document */
3+
body {
4+
width: 720px;
5+
margin: auto;
6+
}
7+
td {
8+
padding: 0 15px 0 15px;
9+
}
10+
table, td {
11+
padding-top: 0.5em;
12+
padding-bottom: 0.5em;
13+
}
14+
table.center {
15+
margin-left: auto;
16+
margin-right: auto;
17+
}
18+
table {
19+
20+
border-collapse: collapse;
21+
22+
}
23+
24+
25+
.boxed {
26+
27+
border: 2px solid green ;
28+
width: 75%;
29+
30+
}
31+
.WWbox{
32+
background-color: yellow;
33+
border: solid 2px green;
34+
box-shadow: 0px 3px 5px 1px silver;
35+
}
36+
h1{
37+
color: #006600;
38+
}
39+
h2{
40+
color: #006600;
41+
text-decoration: underline;
42+
}
43+
44+
h3{
45+
font-weight: bold;
46+
}
47+

M101_Reading_HTML/Thumbs.db

37.5 KB
Binary file not shown.
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,264 @@
1+
<!DOCTYPE html>
2+
<!-- Cite Beginning and Intermediate Algebra by Tyler Wallace is licensed under a Creative Commons
3+
Attribution 3.0 Unported License. (http://creativecommons.org/licenses/by/3.0/)
4+
Based on a work at http://wallace.ccfaculty.org/book/book.html. pages 12-15-->
5+
6+
7+
<html>
8+
<head>
9+
<title>MAT-101: Module 1A Fractions</title>
10+
<style>
11+
table, td
12+
{
13+
padding-top: 0.5em;
14+
padding-bottom: 0.5em;
15+
}
16+
table.center
17+
{
18+
margin-left:auto;
19+
margin-right:auto;
20+
}
21+
</style>
22+
<script type="text/x-mathjax-config">
23+
MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
24+
</script>
25+
<script type="text/javascript"
26+
src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
27+
</script>
28+
</head>
29+
30+
<body>
31+
<b>Fractions</b><br><br>
32+
Working with fractions is a very important foundation to algebra. Here we will
33+
briefly review reducing, multiplying, dividing, adding, and subtracting fractions.
34+
As this is a review, concepts will not be explained in detail as other lessons are.
35+
<br><br>
36+
<b>World View Note:</b> The earliest known use of fraction comes from the Middle
37+
Kingdom of Egypt around 2000 BC!
38+
<br><br>
39+
We always like our final answers when working with fractions to be reduced
40+
(the numerator and denominator are divided by their greatest common factor (GCF)). This is shown in the following example:
41+
<br><br>
42+
43+
<b>Example 1A-1:</b> <br>
44+
<center>
45+
<table class = "center">
46+
<tr>
47+
<td>$\dfrac{36}{84}$</td>
48+
<td>Both numerator and denominator are divisible by $4$</td>
49+
</tr>
50+
<tr>
51+
<td>$\dfrac{36 \div 4}{84 \div 4} = \dfrac{9}{21}$</td>
52+
<td>Both numerator and denominator are still divisible by $3$</td>
53+
</tr>
54+
<tr>
55+
<td>$\dfrac{9 \div 3}{21 \div 3} = \dfrac{3}{7}$</td>
56+
<td>Our solution</td>
57+
</tr>
58+
</table>
59+
</center>
60+
<br>
61+
62+
The previous example could have been done in one step by dividing both numerator
63+
and denominator by $12.$ We also could have divided by $2$ twice and then
64+
divided by $3$ once (in any order). It is not important which method we use as
65+
long as we continue reducing our fraction until it cannot be reduced any further.
66+
<br><br>
67+
The easiest operation with fractions is multiplication. We can multiply fractions
68+
by multiplying straight across, multiplying numerators together and denominators
69+
together.
70+
<br><br>
71+
72+
<b>Example 1A-2:</b> <br>
73+
<table class = "center">
74+
<tr>
75+
<td>$\dfrac{6}{7} \cdot \dfrac{3}{5}$</td>
76+
<td>Multiply numerators across and denominators across</td>
77+
</tr>
78+
<tr>
79+
<td>$\dfrac{18}{35}$</td>
80+
<td>Our solution</td>
81+
</tr>
82+
</table>
83+
<br>
84+
85+
When multiplying we can reduce our fractions before we multiply. We can either
86+
reduce vertically with a single fraction, or diagonally with several fractions, as
87+
long as we use one number from the numerator and one number from the denominator.
88+
<br><br>
89+
90+
<b>Example 1A-3:</b> <br>
91+
<table class = "center">
92+
<tr>
93+
<td>$\dfrac{25}{24} \cdot \dfrac{32}{55}$</td>
94+
<td>Reduce $25$ and $55$ by dividing by $5$. Reduce $32$ and $24$ by dividing by $8$</td>
95+
</tr>
96+
<tr>
97+
<td>$\dfrac{5}{3} \cdot \dfrac{4}{11}$</td>
98+
<td>Multiply numerators across and denominators across</td>
99+
</tr>
100+
<tr>
101+
<td>$\dfrac{20}{33}$</td>
102+
<td>Our solution</td>
103+
</tr>
104+
</table>
105+
<br>
106+
107+
Dividing fractions is very similar to multiplying with one extra step. Dividing
108+
fractions requires us to first take the reciprocal of the second fraction and multiply.
109+
Once we do this, the multiplication problem solves just as the previous
110+
problem.
111+
<br><br>
112+
113+
<b>Example 1A-4:</b> <br>
114+
<table class = "center">
115+
<tr>
116+
<td>$\dfrac{21}{16} \div \dfrac{28}{6}$</td>
117+
<td>Multiply by the reciprocal</td>
118+
</tr>
119+
<tr>
120+
<td>$\dfrac{21}{6} \cdot \dfrac{6}{28}$</td>
121+
<td>Reduce $21$ and $28$ by dividing by $7.$ Reduce $6$ and $16$ by dividing by $2$</td>
122+
</tr>
123+
<tr>
124+
<td>$\dfrac{3}{8} \cdot \dfrac{3}{4}$</td>
125+
<td>Multiply numerators across and denominators across</td>
126+
</tr>
127+
<tr>
128+
<td>$\dfrac{9}{32}$</td>
129+
<td>Our solution</td>
130+
</tr>
131+
</table>
132+
<br>
133+
134+
To add and subtract fractions we will first have to find the least common denominator
135+
(LCD). There are several ways to find an LCD. One way is to find the
136+
smallest multiple of the larger denominator that is also divisible by the smaller
137+
denominator.
138+
139+
<br><br>
140+
141+
<b>Example 1A-5:</b> <br>
142+
<table class = "center">
143+
<tr>
144+
<td>Find the LCD of 8 and 12</td>
145+
<td>Test multiples of 12</td>
146+
</tr>
147+
<tr>
148+
<td>$12?\dfrac{12}{8}$</td>
149+
<td>No! Can't divide 12 by 8</td>
150+
</tr>
151+
<tr>
152+
<td>$24?\dfrac{24}{8}=3$</td>
153+
<td>Yes! We can divide 24 by 8</td>
154+
</tr>
155+
<tr>
156+
<td>24</td>
157+
<td>Our solution</td>
158+
</tr>
159+
</table>
160+
<br>
161+
162+
Adding and subtracting fractions is identical in process. If both fractions already
163+
have a common denominator we just add or subtract the numerators and keep the
164+
denominator.
165+
166+
<br><br>
167+
168+
<b>Example 1A-6:</b> <br>
169+
<table class = "center">
170+
<tr>
171+
<td>$\dfrac{7}{8}+\dfrac{3}{8}$</td>
172+
<td>Same denominator, add numerators $7+3$</td>
173+
</tr>
174+
<tr>
175+
<td>$\dfrac{10}{8}$</td>
176+
<td>Reduce answer, dividing by 2</td>
177+
</tr>
178+
<tr>
179+
<td>$\dfrac{5}{4}$</td>
180+
<td>Our solution</td>
181+
</tr>
182+
</table>
183+
<br>
184+
185+
While $\dfrac{5}{4}$ can be written as the mixed number $1\dfrac{1}{4} , in algebra we will almost never
186+
use mixed numbers. For this reason we will always use the improper fraction, not
187+
the mixed number.
188+
189+
<br><br>
190+
191+
<b>Example 1A-7:</b> <br>
192+
<table class = "center">
193+
<tr>
194+
<td>$\dfrac{13}{6}-\dfrac{9}{6}$</td>
195+
<td>Same denominator, subtract numerators $13-9$</td>
196+
</tr>
197+
<tr>
198+
<td>$\dfrac{4}{6}$</td>
199+
<td>Reduce answer, dividing by $2$</td>
200+
</tr>
201+
<tr>
202+
<td>$\dfrac{2}{3}$</td>
203+
<td>Our solution</td>
204+
</tr>
205+
</table>
206+
<br>
207+
208+
If the denominators do not match we will first have to identify the LCD and build
209+
up each fraction by multiplying the numerators and denominators by the same
210+
number so the denominator is built up to the LCD.
211+
212+
<br><br>
213+
214+
<b>Example 1A-8:</b> <br>
215+
<table class = "center">
216+
<tr>
217+
<td>$\dfrac{5}{6}+\dfrac{4}{9}$</td>
218+
<td> LCD is $18$</td>
219+
</tr>
220+
<tr>
221+
<td>$\dfrac{3\cdot 5}{3\cdot 6}+\dfrac{4\cdot 2}{9\cdot 2}$</td>
222+
<td>Multiply first fraction by $\dfrac{3}{3}$ and the second by $\dfrac{2}{2}$</td>
223+
</tr>
224+
<tr>
225+
<td>$\dfrac{15}{18}+\dfrac{8}{18}$</td>
226+
<td>Same denominator, add numerators, $15+8$</td>
227+
</tr>
228+
<tr>
229+
<td>$\dfrac{23}{18}$</td>
230+
<td>Our solution</td>
231+
</tr>
232+
</table>
233+
<br
234+
235+
<br><br>
236+
237+
<b>Example 1A-9:</b> <br>
238+
<table class = "center">
239+
<tr>
240+
<td>$\dfrac{2}{3}-\dfrac{1}{6}$</td>
241+
<td> LCD is $6$</td>
242+
</tr>
243+
<tr>
244+
<td>$\dfrac{2\cdot 2}{2\cdot 3}-\dfrac{1}{6}$</td>
245+
<td>Multiply first fraction by $\dfrac{2}{2}$, the second already has a denominator of $6$</td>
246+
</tr>
247+
<tr>
248+
<td>$\dfrac{4}{6}-\dfrac{1}{6}$</td>
249+
<td>Same denominator, subtract numerators, $4-1$</td>
250+
</tr>
251+
<tr>
252+
<td>$\dfrac{3}{6}$</td>
253+
<td>Reduce answer, dividing numerator and denominator by $3$</td>
254+
</tr>
255+
<tr>
256+
<td>$\dfrac{1}{2}$</td>
257+
<td>Our solution</td>
258+
</tr>
259+
</table>
260+
<br>
261+
262+
263+
</body>
264+
</html>

0 commit comments

Comments
 (0)