-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathomp.py
38 lines (33 loc) · 1.04 KB
/
omp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 12 12:08:22 2017
@author: Rehan Ahmad
Orthogonal Matching Persuit (OMP) algorithm for sparse representation
D: Dictionary, columns must be normalized (by l2 norm)
X: input signal to represent
L: max. no. of coefficients for each signal
A: Sparse coefficient Matrix
"""
import numpy as np
from copy import deepcopy
def omp(D,X,L):
n,P = X.shape
n,K = D.shape
A = np.ndarray((D.shape[1],X.shape[1]))
for k in range(P):
a = 0
x = deepcopy(X[:,k])
residual = deepcopy(x)
indx = np.zeros((L,),dtype = int)
for j in range(L):
proj = np.dot(D.T,residual)
pos = np.argmax(np.abs(proj))
indx[j] = int(pos)
a = np.dot(np.linalg.pinv(D[:,indx[0:j+1]]),x)
residual = x-np.dot(D[:,indx[0:j+1]],a)
if np.sum(residual**2) < 1e-6:
break
temp = np.zeros((K,))
temp[indx[0:j+1]] = deepcopy(a)
A[:,k] = temp
return A