diff --git a/library/cool/logic.red b/library/cool/logic.red index de9086d5b..9ab26659e 100644 --- a/library/cool/logic.red +++ b/library/cool/logic.red @@ -4,6 +4,12 @@ import data.bool import paths.bool import basics.hedberg +import basics.retract +import data.susp +import data.unit +import data.truncation +import paths.hlevel + def no-double-neg-elim (f : (A : type) → stable A) : void = let f2 = f bool in @@ -34,3 +40,179 @@ def no-double-neg-elim (f : (A : type) → stable A) : void = def no-excluded-middle (g : (A : type) → dec A) : void = no-double-neg-elim (λ A → dec→stable A (g A)) + +-- 7.2.2 +def hrel/set-equiv + (A : type) (R : A → A → type) + (R/prop : (x y : A) → is-prop (R x y)) + (R/refl : (x : A) → R x x) + (R/id : (x y : A) → R x y → path A x y) + : (is-set A) × ((x y : A) → equiv (R x y) (path A x y)) + = + let eq = path-retract/equiv A R (λ a b → + ( R/id a b + , λ p → coe 0 1 (R/refl a) in λ j → R a (p j) + , λ rab → R/prop a b (coe 0 1 (R/refl a) in λ j → R a (R/id a b rab j)) rab + )) in + ( λ x y → coe 0 1 (R/prop x y) in λ j → is-prop (ua _ _ (eq x y) j) + , eq + ) + +-- Hedberg's theorem is a corollary +def paths-stable→set/alt (A : type) (st : (x y : A) → stable (path A x y)) : is-set A = + (hrel/set-equiv A (λ x y → neg (neg (path A x y))) + (λ x y → neg/prop (neg (path A x y))) + (λ _ np → np refl) + st + ).fst + +def P (A : type) (A/prop : is-prop A) (s1 s2 : susp A) : type = + let Au (a : A) = ua A unit (prop/unit A A/prop a) in + let uA (a : A) = symm^1 _ (Au a) in + let Nty : susp A → type = elim [north → unit | south → A | merid c n → uA c n] in + let Sty : susp A → type = elim [north → A | south → unit | merid c n → Au c n] in + elim s1 [ + | north → Nty s2 + | south → Sty s2 + | merid a i → + elim s2 in λ s → path^1 _ (Nty s) (Sty s) [ + | north → uA a + | south → Au a + | merid b j → λ m → + comp 0 1 (connection/both^1 type (uA a) (Au a) m j) [ + | m=0 k → uA (A/prop a b k) j + | m=1 k → Au (A/prop a b k) j + | ∂[j] → refl + ] + ] i + ] + +def P/refl (A : type) (A/prop : is-prop A) (x : susp A) : P A A/prop x x = + let Au (a : A) = ua A unit (prop/unit A A/prop a) in + let uA (a : A) = symm^1 _ (Au a) in + + let pface (B : type) (p : 𝕀 → B) (j i : 𝕀) : B = + comp 1 j (p i) [ + | i=0 → refl + | i=1 → p + ] in + + let pface/ua (a : A) : (i : 𝕀) → pface^1 type (uA a) 0 i + = λ i → + comp 1 0 (coe 1 i a in uA a) in + λ j → pface^1 _ (uA a) j i [ + | i=0 → refl + | i=1 k → coe 1 k a in uA a + ] in + + let qface/ua (a : A) : (i : 𝕀) → trans/filler^1 _ (uA a) (Au a) 1 i + = λ i → + comp 0 1 (coe 1 i a in uA a) in + λ j → trans/filler^1 _ (uA a) (Au a) j i [ + | i=0 → refl + | i=1 → λ k → coe 0 k a in Au a + ] in + + let pq/filler (B : type) (p : 𝕀 → B) (q : [i] B [i=0 → p 1]) (j i : 𝕀) : B = + comp 0 j (p 0) [ + | i=0 → pface B p 0 + | i=1 → trans/filler B p q 1 + ] in + + let pq (a : A) : (i : 𝕀) → pq/filler^1 type (uA a) (Au a) 1 i + = λ i → + comp 0 1 (coe 1 0 a in uA a) in + λ j → pq/filler^1 _ (uA a) (Au a) j i [ + | i=0 → pface/ua a + | i=1 → qface/ua a + ] in + + let pqu/filler (B : type) (p : 𝕀 → B) (q : [i] B [i=0 → p 1]) (j i : 𝕀) : B = + comp 0 1 (pq/filler B p q j i) [ + | i=0 → refl + | i=1 → refl + ] in + + let pqu (a : A) : (i : 𝕀) → pqu/filler^1 type (uA a) (Au a) 1 i + = λ i → + comp 0 1 (box refl [coe 1 0 a in uA a | coe 1 0 a in uA a]) in + λ j → pqu/filler^1 _ (uA a) (Au a) j i [ + | i=0 → pface/ua a + | i=1 → qface/ua a + ] in + + elim x [ + | north → ★ + | south → ★ + | merid a i → pqu a i + ] + +/- +def P/prop (A : type) (A/prop : is-prop A) (x y : susp A) : is-prop (P A A/prop x y) = + λ c d i → ?wat + +def P/id (A : type) (A/prop : is-prop A) (x y : susp A) (Pxy : P A A/prop x y) : path (susp A) x y = ?wat + +-- 10.1.13 +def suspension-lemma (A : type) (A/prop : is-prop A) : + (is-set (susp A)) × (equiv A (path (susp A) north south)) = + let Au (a : A) = ua A unit (prop/unit A A/prop a) in + let uA (a : A) = symm^1 _ (Au a) in + let P (s1 s2 : susp A) : type = + elim s1 [ + | north → + elim s2 [ + | north → unit + | south → A + | merid b j → uA b j + ] + | south → + elim s2 [ + | north → A + | south → unit + | merid b j → Au b j + ] + | merid a i → + let mot (s : susp A) : type^1 = + path^1 + type + (elim s [north → unit | south → A | merid c n → uA c n]) + (elim s [north → A | south → unit | merid c n → Au c n]) + in + elim s2 in mot [ + | north → uA a + | south → Au a + | merid b j → λ i → + comp 0 1 (connection/both^1 type (uA a) (Au a) i j) [ + | i=0 k → uA (A/prop a b k) j + | i=1 k → Au (A/prop a b k) j + | ∂[j] → refl + ] + ] i + ] in + ?suspension-hole + +def is-surjective (A B : type) (f : A → B) : type = (b : B) → trunc (fiber A B f b) + +def is-embedding (A B : type) (f : A → B) : type = (x y : A) → equiv (path A x y) (path B (f x) (f y)) + +def is-injective (A B : type) (A/set : is-set A) (B/set : is-set B) (f : A → B) : type = (x y : A) → path B (f x) (f y) → path A x y + +def injective→embedding (A B : type) (A/set : is-set A) (B/set : is-set B) (f : A → B) : injective A B A/set B/set f → embedding A B f = + λ f/inj x y → + prop/equiv (path A x y) (path B (f x) (f y)) + (A/set x y) (B/set (f x) (f y)) + (λ p i → f (p i)) (f/inj x y) + +def has-choice (X : type) (Y : X → type) : type = (X/set : is-set X) → (Y/set : (x : X) → is-set (Y x)) → ((x : X) → trunc (Y x)) → trunc ((x : X) → Y x) + +def LEM (A : type) : type = (A/prop : is-prop A) → dec A + +def choice→LEM (choice-ax : (X : type) → (Y : X → type) → has-choice X Y) : (A : type) → LEM A = + λ A A/prop → + let f (b : bool) : susp A = elim b [ + | tt → south + | ff → north + ] in + ?choice-hole +-/ \ No newline at end of file diff --git a/library/paths/bool.red b/library/paths/bool.red index db3fd1bd1..dbdd736c6 100644 --- a/library/paths/bool.red +++ b/library/paths/bool.red @@ -3,6 +3,7 @@ import data.void import data.unit import data.bool import basics.isotoequiv +import basics.hedberg def bool-path/code : bool → bool → type = elim [ @@ -24,3 +25,20 @@ def not/equiv : equiv bool bool = def not/path : path^1 type bool bool = ua _ _ not/equiv + +def bool/discrete : discrete bool = + elim [ + | tt → + elim [ + | tt → inl refl + | ff → inr (not/neg ff) + ] + | ff → + elim [ + | tt → inr (not/neg tt) + | ff → inl refl + ] + ] + +def bool/set : is-set bool = + discrete→set bool bool/discrete diff --git a/library/paths/hlevel.red b/library/paths/hlevel.red index c7d87e74a..ac448f2d6 100644 --- a/library/paths/hlevel.red +++ b/library/paths/hlevel.red @@ -1,7 +1,15 @@ import prelude +import data.unit +import basics.isotoequiv import paths.sigma import paths.pi +def prop/unit (A : type) (A/prop : is-prop A) (x0 : A) : equiv A unit = + iso→equiv A unit (λ _ → ★, λ _ → x0, unit/prop ★, A/prop x0) + +def prop/equiv (P Q : type) (P/prop : is-prop P) (Q/prop : is-prop Q) (f : P → Q) (g : Q → P) : equiv P Q = + iso→equiv P Q (f, g, λ p → Q/prop (f (g p)) p, λ q → P/prop (g (f q)) q) + def contr-equiv (A B : type) (A/contr : is-contr A) (B/contr : is-contr B) : equiv A B = diff --git a/library/paths/sigma.red b/library/paths/sigma.red index 44fcd1722..f66cec63e 100644 --- a/library/paths/sigma.red +++ b/library/paths/sigma.red @@ -2,6 +2,28 @@ import prelude import basics.isotoequiv import basics.retract +def sigma/assoc (A : type) (B : A → type) (C : ((x : A) × B x) → type) + : equiv ((x : A) × (y : B x) × C (x, y)) ((p : ((x : A) × B x)) × C p) + = + ( λ x → ((x.fst, x.snd.fst), x.snd.snd) + , λ b → ( ((b.fst.fst, b.fst.snd, b.snd), refl) + , λ c i → + ( ((c.snd i).fst.fst, (c.snd i).fst.snd, (c.snd i).snd) + , λ j → weak-connection/or _ (c.snd) i j + ) + ) + ) + +def sigma/contr/equiv/fst (A : type) (P : A → type) (P/contr : (x : A) → is-contr (P x)) + : equiv ((x : A) × P x) A + = + iso→equiv ((x : A) × P x) A + ( λ s → s.fst + , λ x → (x, (P/contr x).fst) + , refl + , λ s i → (s.fst, symm _ ((P/contr (s.fst)).snd (s.snd)) i) + ) + def sigma/path (A : type) (B : A → type) (a : A) (b : B a) (a' : A) (b' : B a') : equiv ((p : path A a a') × pathd (λ i → B (p i)) b b') (path ((a : A) × B a) (a,b) (a',b')) =