forked from EleutherAI/lm-evaluation-harness
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_models.py
324 lines (273 loc) · 10.9 KB
/
test_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import hashlib
import json
import openai
import os
import pickle
import pytest
import unittest.mock as mock
import lm_eval.models as models
LOGLIKELIHOOD_TEST_CASES = [
("The quick brown fox jumps over the lazy", " dog"),
("The quick brown fox jumps over the lazy", " cat"),
("The quick brown fox jumps over the lazy", ", lazy dog"),
("The quick brown fox jumps over the lazy", ", lazy fox"),
(
"The quick brown fox jumps over the lazy",
", lazy fox and they both fall to the ground",
),
(
"""A mult""",
"""ilayer perceptron (MLP) is a class of feedforward artificial neural network (ANN)""",
),
(
"""The term MLP is used ambiguously, sometimes loosely to any feedforward ANN, sometimes strictly to refer to networks composed of multiple layers of perceptrons""",
""" (with threshold activation); see § Terminology""",
),
(
"""Multilayer perceptrons are sometimes coll""",
"""oquially referred to as "vanilla" neural networks, especially when they have a single hidden layer.[1]""",
),
(
"""An MLP consists of at least three layers of nodes: an input layer, a hidden layer and an output layer. Except for the input nodes, each node is a neuron that uses a nonlinear""",
""" activation function.""",
),
(
"""MLP utilizes a supervised""",
""" learning technique called backpropagation for training.[2][3] Its multiple layers and non-linear activation distinguish MLP from a linear perceptron. It can distinguish data that is not linearly separable.[4]""",
),
(
"""Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic""",
""" in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. """,
),
(
"""Specifically, we train GPT-3, an autoregressive language model with 175""",
""" billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.""",
),
(
"""A mult""",
"""ilayer perceptron (MLP) is a class of feedforward artificial neural network (ANN)""",
),
("""Hello""", """ World"""),
]
# Test HuggingFace Models (GPT-2)
def test_gpt2():
gpt2 = models.get_model("gpt2").create_from_arg_string("device=cpu")
(
(ll_dog, ig_dog),
(ll_cat, ig_cat),
(_, ll_max_0),
(_, ll_max_1),
(_, ll_max_2),
*vals,
) = gpt2.loglikelihood(LOGLIKELIHOOD_TEST_CASES)
assert ll_dog > ll_cat
assert not ig_cat
assert not ll_max_0
assert ll_max_1
assert ll_max_2
# test empty context
gpt2.loglikelihood([("", "test")])
(gen,) = gpt2.greedy_until(
[("The quick brown fox jumps over the lazy", [".", "\n"])]
)
assert gen == ", lazy fox and they both fall to the ground"
targets = [
-61.60536193847656,
-56.57843780517578,
-62.131004333496094,
-9.799489974975586,
-153.96334838867188,
-341.222900390625,
-731.1475830078125,
-61.60536193847656,
-8.682319641113281,
]
for (pred, _), tgt in zip(vals, targets):
assert pred == pytest.approx(tgt, rel=1e-3)
def test_gpt2_perplexity():
gpt2 = models.get_model("gpt2").create_from_arg_string("device=cpu")
test_string = "We study empirical scaling laws for language model performance on the cross-entropy loss."
perplexity = gpt2.loglikelihood_rolling([(test_string,)])[0]
tgt = sum(
[
-4.9599953,
-8.069298,
-8.308624,
-10.178513,
-8.906924,
-1.9318912,
-7.745445,
-7.146077,
-5.2072,
-3.5882986,
-1.9957212,
-8.044922,
-0.20841774,
-5.1096807,
-0.099879116,
-8.888423,
-4.6180487,
]
)
assert perplexity == pytest.approx(tgt, rel=1e-3)
with mock.patch.object(
models.gpt2.HFLM, "max_length", new_callable=mock.PropertyMock
) as mock_max_length:
mock_max_length.return_value = 5
gpt2 = models.get_model("gpt2").create_from_arg_string("device=cpu")
perplexity = gpt2.loglikelihood_rolling([(test_string,)])[0]
tgt = sum(
[
-4.96001,
-8.069275,
-8.308612,
-10.178482,
-8.90691,
-4.037338,
-8.09261,
-11.662385,
-10.206891,
-4.425003,
-2.2563353,
-7.909143,
-1.9304147,
-7.3610134,
-2.3120654,
-7.3229,
-2.1643813,
]
)
assert perplexity == pytest.approx(tgt, rel=1e-3)
# Test OpenAI Models (GPT-3)
def openai_mock_completion(**kwargs):
# Mock completion function
# Loads from a cached+pickled response if it exists, otherwise it will actually try to ping
os.makedirs("tests/testdata", exist_ok=True)
hash = hashlib.sha256(
json.dumps(kwargs, sort_keys=True).encode("utf-8")
).hexdigest()
fname = f"tests/testdata/gpt3_test_{hash}.pkl"
if os.path.exists(fname):
with open(fname, "rb") as fh:
return pickle.load(fh)
ret = openai.Completion.create(**kwargs)
ret.api_key = ""
with open(fname, "wb") as fh:
pickle.dump(ret, fh)
return ret
@mock.patch("lm_eval.models.gpt3.oa_completion", new=openai_mock_completion)
def test_gpt3():
if "OPENAI_API_SECRET_KEY" not in os.environ:
os.environ["OPENAI_API_SECRET_KEY"] = ""
gpt3 = models.get_model("gpt3").create_from_arg_string("engine=ada")
(
(ll_dog, ig_dog),
(ll_cat, ig_cat),
(_, ll_max_0),
(_, ll_max_1),
(_, ll_max_2),
*vals,
) = gpt3.loglikelihood(LOGLIKELIHOOD_TEST_CASES)
assert ll_dog > ll_cat
assert not ig_cat
assert ig_dog
assert not ll_max_0
assert not ll_max_1
assert not ll_max_2
# test empty context
gpt3.loglikelihood([("", "test")])
(gen,) = gpt3.greedy_until(
[("The quick brown fox jumps over the lazy", [".", "\n"])]
)
assert gen == " dog"
print([x[0] for x in vals])
targets = [
-34.848301606999996,
-47.148329679999996,
-45.44380149599999,
-5.285246016,
-133.97821690686004,
-321.2616693239001,
-658.0299524401041,
-34.848301606999996,
-7.525115,
]
for (pred, _), tgt in zip(vals, targets):
assert pred == pytest.approx(tgt, rel=1e-3)
@mock.patch("lm_eval.models.gpt3.oa_completion", new=openai_mock_completion)
def test_gpt3_perplexity():
if "OPENAI_API_SECRET_KEY" not in os.environ:
os.environ["OPENAI_API_SECRET_KEY"] = ""
gpt3 = models.get_model("gpt3").create_from_arg_string("engine=ada")
test_string = "We study empirical scaling laws for language model performance on the cross-entropy loss."
perplexity = gpt3.loglikelihood_rolling([(test_string,)])[0]
tgt = -84.38819608
assert perplexity == pytest.approx(tgt, rel=1e-3)
# Hack: modify gpt3 to have shorter context length to induce rolling windows
with mock.patch.object(
models.gpt3.GPT3LM, "max_length", new_callable=mock.PropertyMock
) as mock_max_length:
mock_max_length.return_value = 5
gpt3 = models.get_model("gpt3").create_from_arg_string("engine=ada")
perplexity = gpt3.loglikelihood_rolling([(test_string,)])[0]
tgt = -101.81967209999999
assert perplexity == pytest.approx(tgt, rel=1e-3)
# Test TextSynth Models (GPT-J)
def textsynth_mock_completion(**kwargs):
# Mock completion function
# Loads from a cached+pickled response if it exists, otherwise it will actually try to ping
import requests
os.makedirs("tests/testdata", exist_ok=True)
hash_kwargs = {k: v for k, v in kwargs.items() if k != "headers"}
hash = hashlib.sha256(
json.dumps(hash_kwargs, sort_keys=True).encode("utf-8")
).hexdigest()
fname = f"tests/testdata/textsynth_test_{hash}.pkl"
if os.path.exists(fname):
with open(fname, "rb") as fh:
return pickle.load(fh)
ret = requests.post(**kwargs)
with open(fname, "wb") as fh:
pickle.dump(ret, fh)
return ret
@mock.patch(
"lm_eval.models.textsynth.textsynth_completion", new=textsynth_mock_completion
)
def test_textsynth():
if "TEXTSYNTH_API_SECRET_KEY" not in os.environ:
os.environ["TEXTSYNTH_API_SECRET_KEY"] = ""
textsynth = models.get_model("textsynth").create_from_arg_string("engine=gptj_6B")
(
(ll_dog, ig_dog),
(ll_cat, ig_cat),
(_, ll_max_0),
(_, ll_max_1),
(_, ll_max_2),
*vals,
) = textsynth.loglikelihood(LOGLIKELIHOOD_TEST_CASES)
assert ll_dog > ll_cat
assert not ig_cat
assert ig_dog
assert not ll_max_0
assert not ll_max_1
assert not ll_max_2
# test empty context
textsynth.loglikelihood([("", "test")])
(gen,) = textsynth.greedy_until(
[("The quick brown fox jumps over the lazy", [".", "\n"])]
)
assert gen == " dog"
print([x[0] for x in vals])
targets = [
-17.90513712817,
-41.83518912287,
-33.82445643841,
-2.377361565302,
-99.53018069754,
-243.5642283598,
-528.6862613790,
-17.90513712817,
-5.041000672142,
]
for (pred, _), tgt in zip(vals, targets):
assert pred == pytest.approx(tgt, rel=1e-3)