forked from Ethan-TZ/UFIN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
77 lines (68 loc) · 2.65 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from Model import PEPNet
from Model.PEPNet import *
from Model.RMoE import *
from Model.EulerNet import *
from Utils import Config
import numpy as np
from sklearn.metrics import log_loss, roc_auc_score
from tqdm import tqdm
from Utils import Logger
import random as r
from torch.nn import functional as F
import os
class Tester():
def __init__(self , filename) -> None:
config = Config(filename)
self.config = config
self.ID = filename.split('.')[0]
self.logger = Logger(config)
self.interval = config.interval
self.dataset = Dataset(config)
self.savedpath = config.savedpath
self.config.dataset = self.dataset
self.model = UFIN(config).cuda()
print(config.dataset_name)
self.savedpath = config.savedpath
if os.path.exists(self.savedpath):
save_info = torch.load(self.savedpath)
related_params= {k:v for k,v in save_info['model'].items()}#if 'decoder' in k}
self.model.load_state_dict(related_params, strict = False)
print("model loaded !")
def run(self):
auc, logloss = self.test_epoch(self.dataset.test)
print(auc,logloss)
def test_epoch(self , datasource):
with torch.no_grad():
self.model.eval()
val , truth = [] , []
for fetch_data in tqdm(datasource) if self.config.verbose else datasource:
prediction = self.model(fetch_data)
val.append(prediction.cpu().numpy())
truth.append(fetch_data['label'].numpy())
y_hat = np.concatenate(val, axis=0).squeeze()
y = np.concatenate(truth, axis=0).squeeze()
auc = roc_auc_score(y, y_hat)
logloss = - np.sum(y*np.log(y_hat + 1e-6) + (1-y)*np.log(1-y_hat+1e-6)) /len(y)
return auc , logloss
if __name__ == '__main__':
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--config_files", help="path to load config", default="/home/data/tz/DAGFM_pytorch/RunTimeConf_Criteo/fibinet.yaml")
parser.add_argument("--gpu", help="path to load config", default=0)
args = parser.parse_args()
import os
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
import torch
from torch import nn
from Data.dataset import Dataset
from Model import *
setup_seed(2022)
trainer = Tester(args.config_files)
trainer.run()