@@ -177,7 +177,7 @@ In particular, we suppose that
177
177
178
178
``` {math}
179
179
:label: p_et
180
- p^e_t = f(p_{t-1}, p_{t-2})
180
+ p^e_{t-1} = f(p_{t-1}, p_{t-2})
181
181
```
182
182
183
183
where $f$ is some function.
@@ -204,7 +204,7 @@ Let's start with naive expectations, which refers to the case where producers ex
204
204
205
205
In other words,
206
206
207
- $$ p_t ^e = p_{t-1} $$
207
+ $$ p_{t-1} ^e = p_{t-1} $$
208
208
209
209
Using {eq}` price_t ` , we then have
210
210
@@ -408,15 +408,15 @@ That is,
408
408
409
409
``` {math}
410
410
:label: pe_adaptive
411
- p_t ^e = \alpha p_{t-1} + (1-\alpha) p^e_{t-1 }
411
+ p_{t-1} ^e = \alpha p_{t-1} + (1-\alpha) p^e_{t-2 }
412
412
\qquad (0 \leq \alpha \leq 1)
413
413
```
414
414
415
415
Another way to write this is
416
416
417
417
``` {math}
418
418
:label: pe_adaptive_2
419
- p_t ^e = p^e_{t-1 } + \alpha (p_{t-1} - p_{t-1 }^e)
419
+ p_{t-1} ^e = p^e_{t-2 } + \alpha (p_{t-1} - p_{t-2 }^e)
420
420
```
421
421
422
422
This equation helps to show that expectations shift
@@ -427,7 +427,7 @@ This equation helps to show that expectations shift
427
427
Using {eq}` pe_adaptive ` , we obtain the dynamics
428
428
429
429
$$
430
- p_t = - \frac{1}{b} [ S(\alpha p_{t-1} + (1-\alpha) p^e_{t-1 }) - a]
430
+ p_t = - \frac{1}{b} [ S(\alpha p_{t-1} + (1-\alpha) p^e_{t-2 }) - a]
431
431
$$
432
432
433
433
@@ -547,7 +547,7 @@ That is,
547
547
548
548
``` {math}
549
549
:label: pe_blae
550
- p_t ^e = \alpha p_{t-1} + (1-\alpha) p_{t-2}
550
+ p_{t-1} ^e = \alpha p_{t-1} + (1-\alpha) p_{t-2}
551
551
```
552
552
553
553
0 commit comments