Skip to content

Commit d31fdd6

Browse files
Tom's first edit of day of cons smoothing lecture
1 parent c7049ef commit d31fdd6

File tree

1 file changed

+121
-113
lines changed

1 file changed

+121
-113
lines changed

lectures/cons_smooth.md

Lines changed: 121 additions & 113 deletions
Original file line numberDiff line numberDiff line change
@@ -98,119 +98,6 @@ def creat_cs_model(R=1.05, g1=1, g2=1/2, T=65):
9898
9999
+++ {"user_expressions": []}
100100
101-
## Difference equations with linear algebra
102-
103-
As a warmup, we'll describe a useful way of representing and "solving" linear difference equations.
104-
105-
To generate some $y$ vectors, we'll just write down a linear difference equation
106-
with appropriate initial conditions and then use linear algebra to solve it.
107-
108-
### First-order difference equation
109-
110-
We'll start with a first-order linear difference equation for $\{y_t\}_{t=0}^T$:
111-
112-
$$
113-
y_{t} = \lambda y_{t-1}, \quad t = 1, 2, \ldots, T
114-
$$
115-
116-
where $y_0$ is a given initial condition.
117-
118-
119-
We can cast this set of $T$ equations as a single matrix equation
120-
121-
$$
122-
\begin{bmatrix}
123-
1 & 0 & 0 & \cdots & 0 & 0 \cr
124-
-\lambda & 1 & 0 & \cdots & 0 & 0 \cr
125-
0 & -\lambda & 1 & \cdots & 0 & 0 \cr
126-
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
127-
0 & 0 & 0 & \cdots & -\lambda & 1
128-
\end{bmatrix}
129-
\begin{bmatrix}
130-
y_1 \cr y_2 \cr y_3 \cr \vdots \cr y_T
131-
\end{bmatrix}
132-
=
133-
\begin{bmatrix}
134-
\lambda y_0 \cr 0 \cr 0 \cr \vdots \cr 0
135-
\end{bmatrix}
136-
$$
137-
138-
139-
Multiplying both sides by inverse of the matrix on the left provides the solution
140-
141-
```{math}
142-
:label: fst_ord_inverse
143-
144-
\begin{bmatrix}
145-
y_1 \cr y_2 \cr y_3 \cr \vdots \cr y_T
146-
\end{bmatrix}
147-
=
148-
\begin{bmatrix}
149-
1 & 0 & 0 & \cdots & 0 & 0 \cr
150-
\lambda & 1 & 0 & \cdots & 0 & 0 \cr
151-
\lambda^2 & \lambda & 1 & \cdots & 0 & 0 \cr
152-
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
153-
\lambda^{T-1} & \lambda^{T-2} & \lambda^{T-3} & \cdots & \lambda & 1
154-
\end{bmatrix}
155-
\begin{bmatrix}
156-
\lambda y_0 \cr 0 \cr 0 \cr \vdots \cr 0
157-
\end{bmatrix}
158-
```
159-
160-
```{exercise}
161-
:label: consmooth_ex1
162-
163-
In the {eq}`fst_ord_inverse`, we multiply the inverse of the matrix $A$. In this exercise, please confirm that
164-
165-
$$
166-
\begin{bmatrix}
167-
1 & 0 & 0 & \cdots & 0 & 0 \cr
168-
\lambda & 1 & 0 & \cdots & 0 & 0 \cr
169-
\lambda^2 & \lambda & 1 & \cdots & 0 & 0 \cr
170-
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
171-
\lambda^{T-1} & \lambda^{T-2} & \lambda^{T-3} & \cdots & \lambda & 1
172-
\end{bmatrix}
173-
$$
174-
175-
is the inverse of $A$ and check that $A A^{-1} = I$
176-
177-
```
178-
179-
### Second order difference equation
180-
181-
The second-order linear difference equation for $\{y_t\}_{t=0}^T$ is
182-
183-
$$
184-
y_{t} = \lambda_1 y_{t-1} + \lambda_2 y_{t-2}, \quad t = 1, 2, \ldots, T
185-
$$
186-
187-
Similarly, we can cast this set of $T$ equations as a single matrix equation
188-
189-
$$
190-
\begin{bmatrix}
191-
1 & 0 & 0 & \cdots & 0 & 0 & 0 \cr
192-
-\lambda_1 & 1 & 0 & \cdots & 0 & 0 & 0 \cr
193-
-\lambda_2 & -\lambda_1 & 1 & \cdots & 0 & 0 & 0 \cr
194-
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
195-
0 & 0 & 0 & \cdots & -\lambda_2 & -\lambda_1 & 1
196-
\end{bmatrix}
197-
\begin{bmatrix}
198-
y_1 \cr y_2 \cr y_3 \cr \vdots \cr y_T
199-
\end{bmatrix}
200-
=
201-
\begin{bmatrix}
202-
\lambda_1 y_0 + \lambda_2 y_{-1} \cr \lambda_2 y_0 \cr 0 \cr \vdots \cr 0
203-
\end{bmatrix}
204-
$$
205-
206-
Multiplying both sides by inverse of the matrix on the left again provides the solution.
207-
208-
```{exercise}
209-
:label: consmooth_ex2
210-
211-
As an exercise, we ask you to represent and solve a **third order linear difference equation**.
212-
How many initial conditions must you specify?
213-
```
214101
215102
## Friedman-Hall consumption-smoothing model
216103
@@ -558,3 +445,124 @@ plt.ylabel('derivatives of welfare')
558445
plt.xlabel(r'$\phi$')
559446
plt.show()
560447
```
448+
449+
450+
## Difference equations with linear algebra
451+
452+
In the preceding sections we have used linear algebra to solve a consumption smoothing model.
453+
454+
The same tools from linear algebra -- matrix multiplication and matrix inversion -- can be used to study many other dynamic models too.
455+
456+
We'll concluse this lecture by giving a couple of examples.
457+
458+
In particular, we'll describe a useful way of representing and "solving" linear difference equations.
459+
460+
To generate some $y$ vectors, we'll just write down a linear difference equation
461+
with appropriate initial conditions and then use linear algebra to solve it.
462+
463+
### First-order difference equation
464+
465+
We'll start with a first-order linear difference equation for $\{y_t\}_{t=0}^T$:
466+
467+
$$
468+
y_{t} = \lambda y_{t-1}, \quad t = 1, 2, \ldots, T
469+
$$
470+
471+
where $y_0$ is a given initial condition.
472+
473+
474+
We can cast this set of $T$ equations as a single matrix equation
475+
476+
$$
477+
\begin{bmatrix}
478+
1 & 0 & 0 & \cdots & 0 & 0 \cr
479+
-\lambda & 1 & 0 & \cdots & 0 & 0 \cr
480+
0 & -\lambda & 1 & \cdots & 0 & 0 \cr
481+
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
482+
0 & 0 & 0 & \cdots & -\lambda & 1
483+
\end{bmatrix}
484+
\begin{bmatrix}
485+
y_1 \cr y_2 \cr y_3 \cr \vdots \cr y_T
486+
\end{bmatrix}
487+
=
488+
\begin{bmatrix}
489+
\lambda y_0 \cr 0 \cr 0 \cr \vdots \cr 0
490+
\end{bmatrix}
491+
$$
492+
493+
494+
Multiplying both sides by inverse of the matrix on the left provides the solution
495+
496+
```{math}
497+
:label: fst_ord_inverse
498+
499+
\begin{bmatrix}
500+
y_1 \cr y_2 \cr y_3 \cr \vdots \cr y_T
501+
\end{bmatrix}
502+
=
503+
\begin{bmatrix}
504+
1 & 0 & 0 & \cdots & 0 & 0 \cr
505+
\lambda & 1 & 0 & \cdots & 0 & 0 \cr
506+
\lambda^2 & \lambda & 1 & \cdots & 0 & 0 \cr
507+
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
508+
\lambda^{T-1} & \lambda^{T-2} & \lambda^{T-3} & \cdots & \lambda & 1
509+
\end{bmatrix}
510+
\begin{bmatrix}
511+
\lambda y_0 \cr 0 \cr 0 \cr \vdots \cr 0
512+
\end{bmatrix}
513+
```
514+
515+
```{exercise}
516+
:label: consmooth_ex1
517+
518+
In the {eq}`fst_ord_inverse`, we multiply the inverse of the matrix $A$. In this exercise, please confirm that
519+
520+
$$
521+
\begin{bmatrix}
522+
1 & 0 & 0 & \cdots & 0 & 0 \cr
523+
\lambda & 1 & 0 & \cdots & 0 & 0 \cr
524+
\lambda^2 & \lambda & 1 & \cdots & 0 & 0 \cr
525+
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
526+
\lambda^{T-1} & \lambda^{T-2} & \lambda^{T-3} & \cdots & \lambda & 1
527+
\end{bmatrix}
528+
$$
529+
530+
is the inverse of $A$ and check that $A A^{-1} = I$
531+
532+
```
533+
534+
### Second order difference equation
535+
536+
The second-order linear difference equation for $\{y_t\}_{t=0}^T$ is
537+
538+
$$
539+
y_{t} = \lambda_1 y_{t-1} + \lambda_2 y_{t-2}, \quad t = 1, 2, \ldots, T
540+
$$
541+
542+
Similarly, we can cast this set of $T$ equations as a single matrix equation
543+
544+
$$
545+
\begin{bmatrix}
546+
1 & 0 & 0 & \cdots & 0 & 0 & 0 \cr
547+
-\lambda_1 & 1 & 0 & \cdots & 0 & 0 & 0 \cr
548+
-\lambda_2 & -\lambda_1 & 1 & \cdots & 0 & 0 & 0 \cr
549+
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \cr
550+
0 & 0 & 0 & \cdots & -\lambda_2 & -\lambda_1 & 1
551+
\end{bmatrix}
552+
\begin{bmatrix}
553+
y_1 \cr y_2 \cr y_3 \cr \vdots \cr y_T
554+
\end{bmatrix}
555+
=
556+
\begin{bmatrix}
557+
\lambda_1 y_0 + \lambda_2 y_{-1} \cr \lambda_2 y_0 \cr 0 \cr \vdots \cr 0
558+
\end{bmatrix}
559+
$$
560+
561+
Multiplying both sides by inverse of the matrix on the left again provides the solution.
562+
563+
```{exercise}
564+
:label: consmooth_ex2
565+
566+
As an exercise, we ask you to represent and solve a **third order linear difference equation**.
567+
How many initial conditions must you specify?
568+
```

0 commit comments

Comments
 (0)