|
95 | 95 | + \begin{bmatrix}
|
96 | 96 | 0 \cr 0 \cr 0 \cr \vdots \cr 0 \cr \delta p_{T+1}^*
|
97 | 97 | \end{bmatrix}
|
98 |
| -$$ (eq:pieq) |
| 98 | +$$ (eq:pvpieq) |
99 | 99 |
|
100 | 100 | +++
|
101 | 101 |
|
102 | 102 | ```{exercise-start}
|
103 | 103 | :label: pv_ex_1
|
104 | 104 | ```
|
105 | 105 |
|
106 |
| -Carry out the matrix multiplication in [](eq:pieq) by hand and confirm that you |
| 106 | +Carry out the matrix multiplication in [](eq:pvpieq) by hand and confirm that you |
107 | 107 | recover the equations in [](eq:Euler_stack).
|
108 | 108 |
|
109 | 109 | ```{exercise-end}
|
110 | 110 | ```
|
111 | 111 |
|
112 |
| -In vector-matrix notation, we can write the system [](eq:pieq) as |
| 112 | +In vector-matrix notation, we can write the system [](eq:pvpieq) as |
113 | 113 |
|
114 | 114 | $$
|
115 | 115 | A p = d + b
|
116 | 116 | $$ (eq:apdb)
|
117 | 117 |
|
118 |
| -Here $A$ is the matrix on the left side of equation {eq}`eq:pieq`, while |
| 118 | +Here $A$ is the matrix on the left side of equation {eq}`eq:pvpieq`, while |
119 | 119 |
|
120 | 120 | $$
|
121 | 121 | p =
|
@@ -273,7 +273,7 @@ eliminates the cycles.
|
273 | 273 |
|
274 | 274 | ## Analytical Expressions
|
275 | 275 |
|
276 |
| -It can be verified that the inverse of the matrix $A$ in {eq}`eq:pieq` is |
| 276 | +It can be verified that the inverse of the matrix $A$ in {eq}`eq:pvpieq` is |
277 | 277 |
|
278 | 278 |
|
279 | 279 | $$ A^{-1} =
|
@@ -304,9 +304,9 @@ If we use the expression [](eq:Ainv) in [](eq:apdb_sol) and perform the indicate
|
304 | 304 |
|
305 | 305 | $$
|
306 | 306 | p_t = \sum_{s=t}^T \delta^{s-t} d_s + \delta^{T+1-t} p_{T+1}^*
|
307 |
| -$$ (eq:fisctheory1) |
| 307 | +$$ (eq:ptpveq) |
308 | 308 |
|
309 |
| -Pricing formula {eq}`eq:fisctheory1` asserts that two components sum to the asset price |
| 309 | +Pricing formula {eq}`eq:ptpveq` asserts that two components sum to the asset price |
310 | 310 | $p_t$:
|
311 | 311 |
|
312 | 312 | * a **fundamental component** $\sum_{s=t}^T \delta^{s-t} d_s$ that equals the discounted present value of prospective dividends
|
@@ -367,7 +367,7 @@ $$ (eq:pieq2)
|
367 | 367 |
|
368 | 368 | Evidently, if $p_{T+1}^* = 0$, a price vector $\vec p$ of with all entries zero
|
369 | 369 | solves this equation and the only the **fundamental** component of our pricing
|
370 |
| -formula {eq}`eq:fisctheory1` is present. |
| 370 | +formula {eq}`eq:ptpveq` is present. |
371 | 371 |
|
372 | 372 | But let's activate the **bubble** component by setting
|
373 | 373 |
|
|
0 commit comments