Skip to content

Commit c70d0b6

Browse files
authored
Merge pull request #241 from QuantEcon/in_line_with_manual
In line with manual
2 parents e455682 + a7d57a5 commit c70d0b6

28 files changed

+126
-126
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
An undergraduate lecture series for the foundations of computational economics
44

5-
## Content Ideas
5+
## Content ideas
66

77
Content ideas in no particular order.
88

lectures/_static/lecture_specific/graphviz/graphviz_generation.ipynb

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@
5454
"id": "75d07327-0fcc-41f1-8d36-b8b8d4eb1060",
5555
"metadata": {},
5656
"source": [
57-
"## Lake Model"
57+
"## Lake model"
5858
]
5959
},
6060
{
@@ -101,7 +101,7 @@
101101
"id": "194ca10b-dd02-4210-adbc-c2bb8b699d45",
102102
"metadata": {},
103103
"source": [
104-
"## Markov Chains I\n",
104+
"## Markov chains I\n",
105105
"\n",
106106
"### Example 1\n",
107107
"\n",
@@ -202,7 +202,7 @@
202202
"id": "360e6241-2bdc-425e-903a-dab3c5ef0485",
203203
"metadata": {},
204204
"source": [
205-
"## Markov Chains II\n",
205+
"## Markov chains II\n",
206206
"\n",
207207
"### Irreducibility"
208208
]
@@ -330,7 +330,7 @@
330330
"id": "5df3cbb7-f540-4375-8448-c2aaa5526d56",
331331
"metadata": {},
332332
"source": [
333-
"### Markov Chains"
333+
"### Markov chains"
334334
]
335335
},
336336
{
@@ -375,7 +375,7 @@
375375
"id": "395fa1f8-6e8d-4ac5-bc71-f34b0b9c1e9c",
376376
"metadata": {},
377377
"source": [
378-
"### Poverty Trap"
378+
"### Poverty trap"
379379
]
380380
},
381381
{
@@ -456,7 +456,7 @@
456456
"id": "b43e5057-94eb-45e4-80e5-9f85a3c8be52",
457457
"metadata": {},
458458
"source": [
459-
"### Weighted Directed Graph"
459+
"### Weighted directed graph"
460460
]
461461
},
462462
{

lectures/cagan_ree.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -595,7 +595,7 @@ from **falling** at the moment that the unanticipated stabilization arrives.
595595
In various research papers about stabilizations of high inflations, the jump in the money supply described by equation {eq}`eq:eqnmoneyjump` has been called
596596
"the velocity dividend" that a government reaps from implementing a regime change that sustains a permanently lower inflation rate.
597597
598-
#### Technical Details about whether $p$ or $m$ jumps at $T_1$
598+
#### Technical details about whether $p$ or $m$ jumps at $T_1$
599599
600600
We have noted that with a constant expected forward sequence $\mu_s = \bar \mu$ for $s\geq t$, $\pi_{t} =\bar{\mu}$.
601601

lectures/cobweb.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,7 @@ plt.show()
9292

9393

9494

95-
## The Model
95+
## The model
9696

9797
Let's return to our discussion of a hypothetical soy bean market, where price is determined by supply and demand.
9898

@@ -196,7 +196,7 @@ Combining the last two equations gives the dynamics for prices:
196196
The price dynamics depend on the parameter values and also on the function $f$ that determines how producers form expectations.
197197

198198

199-
## Naive Expectations
199+
## Naive expectations
200200

201201
To go further in our analysis we need to specify the function $f$; that is, how expectations are formed.
202202

@@ -392,7 +392,7 @@ For example,
392392
ts_plot_price(m, 10, ts_length=15)
393393
```
394394

395-
## Adaptive Expectations
395+
## Adaptive expectations
396396

397397
Naive expectations are quite simple and also important in driving the cycle that we found.
398398

lectures/commod_price.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -103,7 +103,7 @@ from scipy.stats import beta
103103
```
104104

105105

106-
## The Model
106+
## The model
107107

108108
Consider a market for a single commodity, whose price is given at $t$ by
109109
$p_t$.

lectures/cons_smooth.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ kernelspec:
1313

1414
+++ {"user_expressions": []}
1515

16-
# Consumption smoothing
16+
# Consumption Smoothing
1717

1818
## Overview
1919

lectures/eigen_II.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -146,7 +146,7 @@ We can then take transpose to obtain $A^\top w = \lambda w$ and obtain $w^\top A
146146
This is a more common expression and where the name left eigenvectors originates.
147147

148148
(perron-frobe)=
149-
### The Perron-Frobenius Theorem
149+
### The Perron-Frobenius theorem
150150

151151
For a square nonnegative matrix $A$, the behavior of $A^k$ as $k \to \infty$ is controlled by the eigenvalue with the largest
152152
absolute value, often called the **dominant eigenvalue**.
@@ -478,7 +478,7 @@ $$
478478
$$
479479
```
480480

481-
We can see the Neumann series lemma in action in the following example.
481+
We can see the Neumann Series Lemma in action in the following example.
482482

483483
```{code-cell} ipython3
484484
A = np.array([[0.4, 0.1],
@@ -492,7 +492,7 @@ print(r)
492492

493493
The spectral radius $r(A)$ obtained is less than 1.
494494

495-
Thus, we can apply the Neumann Series lemma to find $(I-A)^{-1}$.
495+
Thus, we can apply the Neumann Series Lemma to find $(I-A)^{-1}$.
496496

497497
```{code-cell} ipython3
498498
I = np.identity(2) #2 x 2 identity matrix
@@ -518,7 +518,7 @@ np.allclose(A_sum, B_inverse)
518518
```
519519

520520
Although we truncate the infinite sum at $k = 50$, both methods give us the same
521-
result which illustrates the result of the Neumann Series lemma.
521+
result which illustrates the result of the Neumann Series Lemma.
522522

523523
## Exercises
524524

@@ -583,7 +583,7 @@ The solution $x^{*}$ is given by the equation $x^{*} = (I-A)^{-1} d$
583583

584584
1. Since $A$ is a nonnegative irreducible matrix, find the Perron-Frobenius eigenvalue of $A$.
585585

586-
2. Use the Neumann Series lemma to find the solution $x^{*}$ if it exists.
586+
2. Use the Neumann Series Lemma to find the solution $x^{*}$ if it exists.
587587

588588
```{exercise-end}
589589
```
@@ -603,7 +603,7 @@ r = max(abs(λ) for λ in evals) #dominant eigenvalue/spectral radius
603603
print(r)
604604
```
605605

606-
Since we have $r(A) < 1$ we can thus find the solution using the Neumann Series lemma.
606+
Since we have $r(A) < 1$ we can thus find the solution using the Neumann Series Lemma.
607607

608608
```{code-cell} ipython3
609609
I = np.identity(3)

lectures/equalizing_difference.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -111,7 +111,7 @@ $$
111111
$$
112112

113113

114-
## Tweaked Model: Workers and Entrepreneurs
114+
## Tweaked model: workers and entrepreneurs
115115

116116

117117
We can add a parameter and reinterpret variables to get a model of entrepreneurs versus workers.

lectures/geom_series.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@ from matplotlib import cm
6161
from mpl_toolkits.mplot3d import Axes3D
6262
```
6363

64-
## Key Formulas
64+
## Key formulas
6565

6666
To start, let $c$ be a real number that lies strictly between
6767
$-1$ and $1$.
@@ -73,7 +73,7 @@ $-1$ and $1$.
7373

7474
We want to evaluate geometric series of two types -- infinite and finite.
7575

76-
### Infinite Geometric Series
76+
### Infinite geometric series
7777

7878
The first type of geometric that interests us is the infinite series
7979

@@ -95,7 +95,7 @@ To prove key formula {eq}`infinite`, multiply both sides by $(1-c)$ and verify
9595
that if $c \in (-1,1)$, then the outcome is the
9696
equation $1 = 1$.
9797

98-
### Finite Geometric Series
98+
### Finite geometric series
9999

100100
The second series that interests us is the finite geometric series
101101

@@ -148,7 +148,7 @@ money (i.e., deposits) in a fractional reserve system.
148148
The geometric series formula {eq}`infinite` is at the heart of the classic model of the money creation process -- one that leads us to the celebrated
149149
**money multiplier**.
150150

151-
### A Simple Model
151+
### A simple model
152152

153153
There is a set of banks named $i = 0, 1, 2, \ldots$.
154154

@@ -254,7 +254,7 @@ $i=0, 1, 2, \ldots$ is
254254
\sum_{i=0}^\infty (1-r)^i D_0 = \frac{D_0}{1 - (1-r)} = \frac{D_0}{r}
255255
```
256256

257-
### Money Multiplier
257+
### Money multiplier
258258

259259
The **money multiplier** is a number that tells the multiplicative
260260
factor by which an exogenous injection of cash into bank $0$ leads
@@ -280,7 +280,7 @@ circumstances in which
280280
equal demand** (e.g., prices and interest rates are frozen)
281281
- national income is entirely determined by aggregate demand
282282

283-
### Static Version
283+
### Static version
284284

285285
An elementary Keynesian model of national income determination consists
286286
of three equations that describe aggregate demand for $y$ and its
@@ -342,7 +342,7 @@ The expression $\sum_{t=0}^\infty b^t$ motivates an interpretation
342342
of the multiplier as the outcome of a dynamic process that we describe
343343
next.
344344

345-
### Dynamic Version
345+
### Dynamic version
346346

347347
We arrive at a dynamic version by interpreting the nonnegative integer
348348
$t$ as indexing time and changing our specification of the
@@ -543,7 +543,7 @@ It follows that
543543
So if someone has a claim on $x$ dollars at time $t+j$, it
544544
is worth $x R^{-j}$ dollars at time $t$ (e.g., today).
545545

546-
### Application to Asset Pricing
546+
### Application to asset pricing
547547

548548
A **lease** requires a payments stream of $x_t$ dollars at
549549
times $t = 0, 1, 2, \ldots$ where
@@ -855,7 +855,7 @@ so $\frac{\partial p_0}{\partial r}$ will always be negative.
855855
Similarly, $\frac{\partial p_0}{\partial g}>0$ as long as $r>g$, $r>0$ and $g>0$ and $x_0$ is positive, so $\frac{\partial p_0}{\partial g}$
856856
will always be positive.
857857

858-
## Back to the Keynesian Multiplier
858+
## Back to the Keynesian multiplier
859859

860860
We will now go back to the case of the Keynesian multiplier and plot the
861861
time path of $y_t$, given that consumption is a constant fraction

lectures/inequality.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ In this section we
2121
* provide motivation for the techniques deployed in the lecture and
2222
* import code libraries needed for our work.
2323

24-
### Some History
24+
### Some history
2525

2626
Many historians argue that inequality played a key role in the fall of the
2727
Roman republic.
@@ -82,7 +82,7 @@ import random as rd
8282
from interpolation import interp
8383
```
8484

85-
## The Lorenz Curve
85+
## The Lorenz curve
8686

8787
One popular measure of inequality is the Lorenz curve.
8888

@@ -126,7 +126,7 @@ income, consumption, etc.
126126

127127
+++
128128

129-
### Lorenz Curves of Simulated Data
129+
### Lorenz curves of simulated data
130130

131131
Let's look at some examples and try to build understanding.
132132

@@ -168,7 +168,7 @@ ax.set_xlim((0, 1))
168168
plt.show()
169169
```
170170

171-
### Lorenz Curves for US Data
171+
### Lorenz curves for US data
172172

173173
Next let's look at the real data, focusing on income and wealth in the US in
174174
2016.
@@ -265,7 +265,7 @@ more extreme than income inequality.
265265

266266
+++
267267

268-
## The Gini Coefficient
268+
## The Gini coefficient
269269

270270
The Lorenz curve is a useful visual representation of inequality in a
271271
distribution.
@@ -332,7 +332,7 @@ ax.text(0.04, 0.5, r'$G = 2 \times$ shaded area', fontsize=12)
332332
plt.show()
333333
```
334334

335-
### Gini Coefficient Dynamics of Simulated Data
335+
### Gini coefficient dynamics of simulated data
336336

337337
Let's examine the Gini coefficient in some simulations.
338338

@@ -399,7 +399,7 @@ coefficient.
399399

400400
+++
401401

402-
### Gini Coefficient Dynamics for US Data
402+
### Gini coefficient dynamics for US data
403403

404404
Now let's look at Gini coefficients for US data derived from the SCF.
405405

@@ -503,7 +503,7 @@ substantially since 1980.
503503
The wealth time series exhibits a strong U-shape.
504504

505505

506-
## Top Shares
506+
## Top shares
507507

508508
Another popular measure of inequality is the top shares.
509509

0 commit comments

Comments
 (0)