Skip to content

Commit 82f573c

Browse files
Fix math equations
1 parent d11b1c7 commit 82f573c

File tree

1 file changed

+18
-12
lines changed

1 file changed

+18
-12
lines changed

lectures/mle.md

Lines changed: 18 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -166,50 +166,57 @@ These estimates can be found by maximizing the likelihood function given the
166166
data.
167167
168168
The pdf of a lognormally distributed random variable $X$ is given by:
169+
169170
$$
170171
f(x) = \frac{1}{x}\frac{1}{\sigma \sqrt{2\pi}} exp\left(\frac{-1}{2}\left(\frac{\ln x-\mu}{\sigma}\right)\right)^2
171172
$$
172173
173174
Since $\ln X$ is normally distributed this is the same as
175+
174176
$$
175177
f(x) = \frac{1}{x} \phi(x)
176178
$$
179+
177180
where $\phi$ is the pdf of $\ln X$ which is normally distibuted with mean $\mu$ and variance $\sigma ^2$.
178181
179182
For a sample $x = (x_1, x_2, \cdots, x_n)$ the _likelihood function_ is given by:
183+
180184
$$
181185
\begin{aligned}
182-
L(\mu, \sigma | x_i) = \prod_{i=1}^{n} f(\mu, \sigma | x_i) \\
183-
L(\mu, \sigma | x_i) = \prod_{i=1}^{n} \frac{1}{x_i} \phi(\ln x_i)
186+
L(\mu, \sigma | x_i) &= \prod_{i=1}^{n} f(\mu, \sigma | x_i) \\
187+
&= \prod_{i=1}^{n} \frac{1}{x_i} \phi(\ln x_i)
184188
\end{aligned}
185189
$$
186190
191+
187192
Taking $\log$ on both sides gives us the _log likelihood function_ which is:
193+
188194
$$
189195
\begin{aligned}
190-
l(\mu, \sigma | x_i) = -\sum_{i=1}^{n} \ln x_i + \sum_{i=1}^n \phi(\ln x_i) \\
191-
l(\mu, \sigma | x_i) = -\sum_{i=1}^{n} \ln x_i - \frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2}
192-
\sum_{i=1}^n (\ln x_i - \mu)^2
196+
\ell(\mu, \sigma | x_i) &= -\sum_{i=1}^{n} \ln x_i + \sum_{i=1}^n \phi(\ln x_i) \\
197+
&= -\sum_{i=1}^{n} \ln x_i - \frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (\ln x_i - \mu)^2
193198
\end{aligned}
194199
$$
195200
196201
To find where this function is maximised we find its partial derivatives wrt $\mu$ and $\sigma ^2$ and equate them to $0$.
197202
198203
Let's first find the MLE of $\mu$,
204+
199205
$$
200206
\begin{aligned}
201-
\frac{\delta l}{\delta \mu} = - \frac{1}{2\sigma^2} \times 2 \sum_{i=1}^n (\ln x_i - \mu) = 0 \\
202-
\Rightarrow \sum_{i=1}^n \ln x_i - n \mu = 0 \\
203-
\Rightarrow \hat{\mu} = \frac{\sum_{i=1}^n \ln x_i}{n}
207+
\frac{\delta l}{\delta \mu} = - \frac{1}{2\sigma^2} \times 2 \sum_{i=1}^n (\ln x_i - \mu) &= 0 \\
208+
\sum_{i=1}^n (\ln x_i - n \mu) &= 0 \\
209+
\hat{\mu} &= \frac{\sum_{i=1}^n \ln x_i}{n}
204210
\end{aligned}
205211
$$
206212
207213
Now let's find the MLE of $\sigma$,
214+
208215
$$
209216
\begin{aligned}
210-
\frac{\delta l}{\delta \sigma^2} = - \frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (\ln x_i - \mu)^2 = 0 \\
211-
\Rightarrow \frac{n}{2\sigma^2} = \frac{1}{2\sigma^4} \sum_{i=1}^n (\ln x_i - \mu)^2 \\
212-
\Rightarrow \hat{\sigma} = \left( \frac{\sum_{i=1}^{n}(\ln x_i - \hat{\mu})^2}{n} \right)^{1/2}
217+
\frac{\delta l}{\delta \sigma^2} = - \frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (\ln x_i - \mu)^2 &= 0 \\
218+
\frac{n}{2\sigma^2} &= \frac{1}{2\sigma^4} \sum_{i=1}^n (\ln x_i - \mu)^2 \\
219+
\hat{\sigma} &= \left( \frac{\sum_{i=1}^{n}(\ln x_i - \hat{\mu})^2}{n} \right)^{1/2}
213220
\end{aligned}
214221
$$
215222
@@ -266,7 +273,6 @@ tr_lognorm
266273
times as large.)
267274
268275
269-
270276
## Pareto distribution
271277
272278
We mentioned above that using maximum likelihood estimation requires us to make

0 commit comments

Comments
 (0)