You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* Table 3.10, price level $\exp p$ and exchange rate
200
203
201
204
202
-
```python
205
+
```{code-cell} ipython3
203
206
df_Hung.head(5)
204
207
```
205
208
206
-
```python
209
+
```{code-cell} ipython3
207
210
m_seq = df_Hung['Notes in circulation']
208
211
p_seq = df_Hung['Hungarian index of prices']
209
212
e_seq = 1/df_Hung['Cents per crown in New York']
@@ -232,11 +235,11 @@ I spliced the three series - Wholesale price index, Wholesale Price Index: On pa
232
235
233
236
I dropped the exchange rate after June 1924, when zloty was adopted, because we don't have the price measured in zloty and old currency in June to compute the exchange rate adjustment.
234
237
235
-
```python
238
+
```{code-cell} ipython3
236
239
df_Pol.head(5)
237
240
```
238
241
239
-
```python
242
+
```{code-cell} ipython3
240
243
# splice three price series in different units
241
244
p_seq1 = df_Pol['Wholesale price index'].copy()
242
245
p_seq2 = df_Pol['Wholesale Price Index: On paper currency basis'].copy()
@@ -260,7 +263,7 @@ e_seq = 1/df_Pol['Cents per Polish mark (zloty after May 1924)']
260
263
e_seq[e_seq.index > '05-01-1924'] = np.nan
261
264
```
262
265
263
-
```python
266
+
```{code-cell} ipython3
264
267
lab = ['Wholesale Price Index', '1/Cents per Polish Mark']
265
268
266
269
# create plot
@@ -277,12 +280,11 @@ plt.show()
277
280
* Table 3.18, wholesale price level $\exp p$
278
281
* Table 3.19, exchange rate
279
282
280
-
```python
283
+
```{code-cell} ipython3
281
284
df_Germ.head(5)
282
285
```
283
286
284
-
285
-
```python
287
+
```{code-cell} ipython3
286
288
p_seq = df_Germ['Price index (on basis of marks before July 1924, reichsmarks after)'].copy()
287
289
e_seq = 1/df_Germ['Cents per mark']
288
290
@@ -298,7 +300,7 @@ plt.show()
298
300
299
301
Jiacheng: I add the new graph here.
300
302
301
-
```python
303
+
```{code-cell} ipython3
302
304
p_seq = df_Germ['Price index (on basis of marks before July 1924, reichsmarks after)'].copy()
303
305
e_seq = 1/df_Germ['Cents per mark'].copy()
304
306
@@ -325,15 +327,15 @@ There might be some ambiguity about exactly which column in the "balance sheets"
325
327
**Seecond Steps:** There are some fun additonal things we can plot to set the stage for our cagan_ree and cagan_adaptive notebooks. For example, we have the data to plot logs of real balances around the times of the stabilizations. We can hunt for instances of "velocity dividends".
0 commit comments