@@ -34,7 +34,7 @@ from matplotlib.patches import Polygon
34
34
```
35
35
36
36
The following figure illustrates a network of linkages among 15 sectors
37
- obtained from the US Bureau of Economic Analysis’s 2019 Input-Output Accounts
37
+ obtained from the US Bureau of Economic Analysis’s 2021 Input-Output Accounts
38
38
Data.
39
39
40
40
``` {code-cell} ipython3
@@ -88,6 +88,10 @@ tags: [hide-input]
88
88
---
89
89
centrality = qbn_io.eigenvector_centrality(A)
90
90
91
+ # Remove self-loops
92
+ for i in range(A.shape[0]):
93
+ A[i][i] = 0
94
+
91
95
fig, ax = plt.subplots(figsize=(8, 10))
92
96
plt.axis("off")
93
97
color_list = qbn_io.colorise_weights(centrality,beta=False)
@@ -237,11 +241,11 @@ More generally, constraints on production are
237
241
$$
238
242
\begin{aligned}
239
243
(I - A) x & \geq d \cr
240
- a_0' x & \leq x_0
244
+ a_0^\top x & \leq x_0
241
245
\end{aligned}
242
246
$$ (eq:inout_1)
243
247
244
- where $A$ is the $n \times n$ matrix with typical element $a_{ij}$ and $a_0' = \begin{bmatrix} a_{01} & \cdots & a_{02} \end{bmatrix}$.
248
+ where $A$ is the $n \times n$ matrix with typical element $a_{ij}$ and $a_0^\top = \begin{bmatrix} a_{01} & \cdots & a_{02} \end{bmatrix}$.
245
249
246
250
247
251
322
326
The second equation of {eq}`eq:inout_1` can be written
323
327
324
328
$$
325
- a_0' x = x_0
329
+ a_0^\top x = x_0
326
330
$$
327
331
328
332
or
329
333
330
334
$$
331
- A_0' d = x_0
335
+ A_0^\top d = x_0
332
336
$$ (eq:inout_frontier)
333
337
334
338
where
335
339
336
340
$$
337
- A_0' = a_0' (I - A)^{-1}
341
+ A_0^\top = a_0^\top (I - A)^{-1}
338
342
$$
339
343
340
344
For $i \in \{1, \ldots , n\}$, the $i$th component of $A_0$ is the amount of labor that is required to produce one unit of final output of good $i$.
@@ -346,12 +350,12 @@ Consider the example in {eq}`eq:inout_ex`.
346
350
Suppose we are now given
347
351
348
352
$$
349
- a_0' = \begin{bmatrix}
353
+ a_0^\top = \begin{bmatrix}
350
354
4 & 100
351
355
\end{bmatrix}
352
356
$$
353
357
354
- Then we can find $A_0' $ by
358
+ Then we can find $A_0^\top $ by
355
359
356
360
```{code-cell} ipython3
357
361
a0 = np.array([4, 100])
383
387
More generally,
384
388
385
389
$$
386
- p = A' p + a_0 w
390
+ p = A^\top p + a_0 w
387
391
$$
388
392
389
393
which states that the price of each final good equals the total cost
390
- of production, which consists of costs of intermediate inputs $A' p$
394
+ of production, which consists of costs of intermediate inputs $A^\top p$
391
395
plus costs of labor $a_0 w$.
392
396
393
397
This equation can be written as
394
398
395
399
$$
396
- (I - A' ) p = a_0 w
400
+ (I - A^\top ) p = a_0 w
397
401
$$ (eq:inout_price)
398
402
399
403
which implies
400
404
401
405
$$
402
- p = (I - A' )^{-1} a_0 w
406
+ p = (I - A^\top )^{-1} a_0 w
403
407
$$
404
408
405
409
Notice how {eq}`eq:inout_price` with {eq}`eq:inout_1` forms a
@@ -414,7 +418,7 @@ This connection surfaces again in a classic linear program and its dual.
414
418
A **primal** problem is
415
419
416
420
$$
417
- \min_ {x} w a_0' x
421
+ \min_ {x} w a_0^\top x
418
422
$$
419
423
420
424
subject to
427
431
The associated **dual** problem is
428
432
429
433
$$
430
- \max_ {p} p' d
434
+ \max_ {p} p^\top d
431
435
$$
432
436
433
437
subject to
434
438
435
439
$$
436
- (I -A)' p \leq a_0 w
440
+ (I -A)^\top p \leq a_0 w
437
441
$$
438
442
439
443
The primal problem chooses a feasible production plan to minimize costs for delivering a pre-assigned vector of final goods consumption $d$.
@@ -444,7 +448,7 @@ By the [strong duality theorem](https://en.wikipedia.org/wiki/Dual_linear_progra
444
448
optimal value of the primal and dual problems coincide:
445
449
446
450
$$
447
- w a_0' x^* = p^* d
451
+ w a_0^\top x^* = p^* d
448
452
$$
449
453
450
454
where $^*$'s denote optimal choices for the primal and dual problems.
569
573
\mu_j = \sum_ {j=1}^n l_ {ij}
570
574
$$
571
575
572
- This can be written as $\mu' = \mathbf {1}' L$ or
576
+ This can be written as $\mu^\top = \mathbb {1}^\top L$ or
573
577
574
578
$$
575
- \mu' = \mathbf {1}' (I-A)^{-1}
579
+ \mu^\top = \mathbb {1}^\top (I-A)^{-1}
576
580
$$
577
581
582
+ Please note that here we use $\mathbb{1}$ to represent a vector of ones.
583
+
578
584
High ranking sectors within this measure are important buyers of intermediate goods.
579
585
580
586
A demand shock in such sectors will cause a large impact on the whole production network.
0 commit comments