Skip to content

Commit 600eff4

Browse files
authored
Merge pull request #191 from QuantEcon/update_heavy_tails
[heavy_tails] update urls for datasets used
2 parents bbcc3bd + 71c357c commit 600eff4

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

lectures/heavy_tails.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -671,7 +671,7 @@ Here is a plot of the firm size distribution for the largest 500 firms in 2020 t
671671
```{code-cell} ipython3
672672
:tags: [hide-input]
673673
674-
df_fs = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/update_csdata/cross_section/forbes-global2000.csv')
674+
df_fs = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/main/cross_section/forbes-global2000.csv')
675675
df_fs = df_fs[['Country', 'Sales', 'Profits', 'Assets', 'Market Value']]
676676
fig, ax = plt.subplots(figsize=(6.4, 3.5))
677677
@@ -693,8 +693,8 @@ The size is measured by population.
693693
:tags: [hide-input]
694694
695695
# import population data of cities in 2023 United States and 2023 Brazil from world population review
696-
df_cs_us = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/update_csdata/cross_section/cities_us.csv')
697-
df_cs_br = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/update_csdata/cross_section/cities_brazil.csv')
696+
df_cs_us = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/main/cross_section/cities_us.csv')
697+
df_cs_br = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/main/cross_section/cities_brazil.csv')
698698
699699
fig, axes = plt.subplots(1, 2, figsize=(8.8, 3.6))
700700
@@ -713,7 +713,7 @@ The data is from the Forbes Billionaires list in 2020.
713713
```{code-cell} ipython3
714714
:tags: [hide-input]
715715
716-
df_w = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/update_csdata/cross_section/forbes-billionaires.csv')
716+
df_w = pd.read_csv('https://media.githubusercontent.com/media/QuantEcon/high_dim_data/main/cross_section/forbes-billionaires.csv')
717717
df_w = df_w[['country', 'realTimeWorth', 'realTimeRank']].dropna()
718718
df_w = df_w.astype({'realTimeRank': int})
719719
df_w = df_w.sort_values('realTimeRank', ascending=True).copy()

0 commit comments

Comments
 (0)