diff --git a/lectures/_static/lecture_specific/inequality/usa-gini-nwealth-tincome-lincome.csv b/lectures/_static/lecture_specific/inequality/usa-gini-nwealth-tincome-lincome.csv index 4bf8d779..a80120ae 100644 --- a/lectures/_static/lecture_specific/inequality/usa-gini-nwealth-tincome-lincome.csv +++ b/lectures/_static/lecture_specific/inequality/usa-gini-nwealth-tincome-lincome.csv @@ -1,21 +1,21 @@ year,n_wealth,t_income,l_income -1950,0.825733203436636,0.44248654139458754,0.5342948198773422 -1953,0.8059487586599333,0.42645440609359464,0.5158978980963698 -1956,0.8121790488050616,0.4442694287339925,0.5349293526208134 -1959,0.7952068741637915,0.43749348077061606,0.5213985948309418 -1962,0.8086945076579374,0.4435843103853642,0.5345127915054336 -1965,0.7904149225687952,0.43763715466663355,0.7487860020887757 -1968,0.7982885066993517,0.42086207944388965,0.5242396427381534 -1971,0.7911574835420259,0.42333442460902565,0.5576454812313468 -1977,0.7571418922185198,0.46187678800902515,0.5704448110072063 -1983,0.7494335400643009,0.43934561846446973,0.5662220844385935 -1989,0.7715705301674317,0.5115249581654214,0.6013995687471423 -1992,0.7508126614055307,0.47406506720767516,0.5983592657979556 -1995,0.7569492388110264,0.48965523558400864,0.5969779516716902 -1998,0.7603291991801189,0.49117441585169025,0.5774462841723348 -2001,0.7816118750507017,0.5239092994681133,0.604273964496734 -2004,0.7700355469522374,0.48843503839032487,0.5981432201792718 -2007,0.7821413776486984,0.5197156312086194,0.6263452195753234 -2010,0.8250825295193427,0.5195972120145639,0.6453653328291896 -2013,0.8227698931835266,0.5314001749843371,0.6498682917772642 -2016,0.8342975903562223,0.5541400068900839,0.6706846793375303 +1950,0.8257332034366344,0.44248654139458693,0.5342948198773417 +1953,0.8059487586599325,0.42645440609359514,0.5158978980963705 +1956,0.8121790488050629,0.4442694287339931,0.5349293526208135 +1959,0.7952068741637919,0.4374934807706156,0.5213985948309419 +1962,0.8086945076579375,0.4435843103853644,0.5345127915054356 +1965,0.7904149225687939,0.43763715466663433,0.7487860020887759 +1968,0.7982885066993506,0.42086207944389026,0.5242396427381537 +1971,0.7911574835420256,0.42333442460902515,0.5576454812313486 +1977,0.7571418922185218,0.46187678800902543,0.5704448110072071 +1983,0.749433540064304,0.43934561846446973,0.5662220844385909 +1989,0.7715705301674298,0.51152495816542,0.6013995687471444 +1992,0.7508126614055317,0.4740650672076807,0.5983592657979544 +1995,0.7569492388110282,0.48965523558400603,0.596977951671693 +1998,0.7603291991801175,0.4911744158516888,0.5774462841723299 +2001,0.7816118750507037,0.5239092994681126,0.6042739644967319 +2004,0.7700355469522371,0.48843503839032426,0.5981432201792735 +2007,0.782141377648699,0.5197156312086187,0.6263452195753223 +2010,0.8250825295193419,0.5195972120145633,0.6453653328291933 +2013,0.8227698931835327,0.5314001749843346,0.6498682917772663 +2016,0.8342975903562247,0.5541400068900854,0.670684679337527 diff --git a/lectures/inequality.md b/lectures/inequality.md index fde7fa22..429146fd 100644 --- a/lectures/inequality.md +++ b/lectures/inequality.md @@ -303,6 +303,8 @@ ax.plot(f_vals_nw[-1], l_vals_nw[-1], label=f'net wealth') ax.plot(f_vals_ti[-1], l_vals_ti[-1], label=f'total income') ax.plot(f_vals_li[-1], l_vals_li[-1], label=f'labor income') ax.plot(f_vals_nw[-1], f_vals_nw[-1], label=f'equality') +ax.set_xlabel("household percentile") +ax.set_ylabel("income/wealth percentile") ax.legend() plt.show() ``` @@ -356,23 +358,18 @@ mystnb: name: lorenz_gini --- fig, ax = plt.subplots() - f_vals, l_vals = lorenz_curve(sample) ax.plot(f_vals, l_vals, label=f'lognormal sample', lw=2) ax.plot(f_vals, f_vals, label='equality', lw=2) - -ax.legend() - ax.vlines([0.8], [0.0], [0.43], alpha=0.5, colors='k', ls='--') ax.hlines([0.43], [0], [0.8], alpha=0.5, colors='k', ls='--') - ax.fill_between(f_vals, l_vals, f_vals, alpha=0.06) - ax.set_ylim((0, 1)) ax.set_xlim((0, 1)) - ax.text(0.04, 0.5, r'$G = 2 \times$ shaded area') - +ax.set_xlabel("household percentile") +ax.set_ylabel("income/wealth percentile") +ax.legend() plt.show() ``` @@ -391,21 +388,17 @@ mystnb: name: lorenz_gini2 --- fig, ax = plt.subplots() - f_vals, l_vals = lorenz_curve(sample) - ax.plot(f_vals, l_vals, label='lognormal sample', lw=2) ax.plot(f_vals, f_vals, label='equality', lw=2) - ax.fill_between(f_vals, l_vals, f_vals, alpha=0.06) ax.fill_between(f_vals, l_vals, np.zeros_like(f_vals), alpha=0.06) - ax.set_ylim((0, 1)) ax.set_xlim((0, 1)) - ax.text(0.55, 0.4, 'A') ax.text(0.75, 0.15, 'B') - +ax.set_xlabel("household percentile") +ax.set_ylabel("income/wealth percentile") ax.legend() plt.show() ``` @@ -711,7 +704,9 @@ We will smooth our data and take an average of the data either side of it for th ```{code-cell} ipython3 ginis["l_income"][1965] = (ginis["l_income"][1962] + ginis["l_income"][1968]) / 2 -ginis["l_income"].plot() +ax = ginis["l_income"].plot() +ax.set_ylabel("Gini coefficient") +plt.show() ``` Now we can focus on US net wealth @@ -728,7 +723,7 @@ mystnb: fig, ax = plt.subplots() ax.plot(years, ginis["n_wealth"], marker='o') ax.set_xlabel("year") -ax.set_ylabel("gini coefficient") +ax.set_ylabel("Gini coefficient") plt.show() ``` @@ -747,7 +742,7 @@ fig, ax = plt.subplots() ax.plot(years, ginis["l_income"], marker='o', label="labor income") ax.plot(years, ginis["t_income"], marker='o', label="total income") ax.set_xlabel("year") -ax.set_ylabel("gini coefficient") +ax.set_ylabel("Gini coefficient") ax.legend() plt.show() ``` @@ -759,7 +754,7 @@ fig, ax = plt.subplots() ax.plot(years, ginis["n_wealth"], marker='o', label="net wealth") ax.plot(years, ginis["l_income"], marker='o', label="labour income") ax.set_xlabel("year") -ax.set_ylabel("gini coefficient") +ax.set_ylabel("Gini coefficient") ax.legend() plt.show() ```