478
478
$$
479
479
```
480
480
481
- We can see the Neumann series lemma in action in the following example.
481
+ We can see the Neumann Series Lemma in action in the following example.
482
482
483
483
``` {code-cell} ipython3
484
484
A = np.array([[0.4, 0.1],
@@ -492,7 +492,7 @@ print(r)
492
492
493
493
The spectral radius $r(A)$ obtained is less than 1.
494
494
495
- Thus, we can apply the Neumann Series lemma to find $(I-A)^{-1}$.
495
+ Thus, we can apply the Neumann Series Lemma to find $(I-A)^{-1}$.
496
496
497
497
``` {code-cell} ipython3
498
498
I = np.identity(2) #2 x 2 identity matrix
@@ -518,7 +518,7 @@ np.allclose(A_sum, B_inverse)
518
518
```
519
519
520
520
Although we truncate the infinite sum at $k = 50$, both methods give us the same
521
- result which illustrates the result of the Neumann Series lemma .
521
+ result which illustrates the result of the Neumann Series Lemma .
522
522
523
523
## Exercises
524
524
@@ -583,7 +583,7 @@ The solution $x^{*}$ is given by the equation $x^{*} = (I-A)^{-1} d$
583
583
584
584
1 . Since $A$ is a nonnegative irreducible matrix, find the Perron-Frobenius eigenvalue of $A$.
585
585
586
- 2 . Use the Neumann Series lemma to find the solution $x^{* }$ if it exists.
586
+ 2 . Use the Neumann Series Lemma to find the solution $x^{* }$ if it exists.
587
587
588
588
``` {exercise-end}
589
589
```
@@ -603,7 +603,7 @@ r = max(abs(λ) for λ in evals) #dominant eigenvalue/spectral radius
603
603
print(r)
604
604
```
605
605
606
- Since we have $r(A) < 1$ we can thus find the solution using the Neumann Series lemma .
606
+ Since we have $r(A) < 1$ we can thus find the solution using the Neumann Series Lemma .
607
607
608
608
``` {code-cell} ipython3
609
609
I = np.identity(3)
0 commit comments