Skip to content

Commit 491c0b5

Browse files
Minor updates
1 parent cb85630 commit 491c0b5

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

lectures/eigen_II.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -478,7 +478,7 @@ $$
478478
$$
479479
```
480480

481-
We can see the Neumann series lemma in action in the following example.
481+
We can see the Neumann Series Lemma in action in the following example.
482482

483483
```{code-cell} ipython3
484484
A = np.array([[0.4, 0.1],
@@ -492,7 +492,7 @@ print(r)
492492

493493
The spectral radius $r(A)$ obtained is less than 1.
494494

495-
Thus, we can apply the Neumann Series lemma to find $(I-A)^{-1}$.
495+
Thus, we can apply the Neumann Series Lemma to find $(I-A)^{-1}$.
496496

497497
```{code-cell} ipython3
498498
I = np.identity(2) #2 x 2 identity matrix
@@ -518,7 +518,7 @@ np.allclose(A_sum, B_inverse)
518518
```
519519

520520
Although we truncate the infinite sum at $k = 50$, both methods give us the same
521-
result which illustrates the result of the Neumann Series lemma.
521+
result which illustrates the result of the Neumann Series Lemma.
522522

523523
## Exercises
524524

@@ -583,7 +583,7 @@ The solution $x^{*}$ is given by the equation $x^{*} = (I-A)^{-1} d$
583583

584584
1. Since $A$ is a nonnegative irreducible matrix, find the Perron-Frobenius eigenvalue of $A$.
585585

586-
2. Use the Neumann Series lemma to find the solution $x^{*}$ if it exists.
586+
2. Use the Neumann Series Lemma to find the solution $x^{*}$ if it exists.
587587

588588
```{exercise-end}
589589
```
@@ -603,7 +603,7 @@ r = max(abs(λ) for λ in evals) #dominant eigenvalue/spectral radius
603603
print(r)
604604
```
605605

606-
Since we have $r(A) < 1$ we can thus find the solution using the Neumann Series lemma.
606+
Since we have $r(A) < 1$ we can thus find the solution using the Neumann Series Lemma.
607607

608608
```{code-cell} ipython3
609609
I = np.identity(3)

0 commit comments

Comments
 (0)