Skip to content

Commit 45d343b

Browse files
committed
misc
1 parent 8af418c commit 45d343b

File tree

1 file changed

+80
-16
lines changed

1 file changed

+80
-16
lines changed

lectures/pv.md

Lines changed: 80 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -152,7 +152,6 @@ $$ (eq:apdb_sol)
152152
153153
Here is a small example, where the dividend stream is given by
154154
155-
+++
156155
157156
```{code-cell} ipython3
158157
T = 6
@@ -202,18 +201,80 @@ b = np.zeros(T+1)
202201
b[-1] = δ * p_star
203202
p = np.linalg.solve(A, d + b)
204203
fig, ax = plt.subplots()
205-
ax.plot(p)
204+
ax.plot(p, 'o', label='asset price')
205+
ax.legend()
206+
ax.set_xlabel('time')
206207
plt.show()
207208
```
208209
209-
+++
210210
211+
We can also consider a cyclically growing dividend sequence, such as
212+
213+
214+
```{code-cell} ipython3
215+
T = 100
216+
current_d = 1.0
217+
d = []
218+
for t in range(T+1):
219+
d.append(current_d)
220+
current_d = current_d * 1.01 + 0.1 * np.sin(t)
221+
222+
fig, ax = plt.subplots()
223+
ax.plot(d, 'o-', ms=4, alpha=0.8, label='dividends')
224+
ax.legend()
225+
ax.set_xlabel('time')
226+
plt.show()
227+
```
228+
229+
```{exercise-start}
230+
:label: pv_ex_cyc
231+
```
232+
233+
Compute the corresponding asset price sequence when $p^*_{T+1} = 0$ and $\delta
234+
= 0.98$.
235+
236+
```{exercise-end}
237+
```
238+
239+
```{solution-start} pv_ex_cyc
240+
:class: dropdown
241+
```
242+
243+
We proceed as above after modifying parameters and $A$.
244+
245+
```{code-cell} ipython3
246+
δ = 0.98
247+
p_star = 0.0
248+
A = np.zeros((T+1, T+1))
249+
for i in range(T+1):
250+
for j in range(T+1):
251+
if i == j:
252+
A[i, j] = 1
253+
if j < T:
254+
A[i, j+1] = -δ
255+
256+
b = np.zeros(T+1)
257+
b[-1] = δ * p_star
258+
p = np.linalg.solve(A, d + b)
259+
fig, ax = plt.subplots()
260+
ax.plot(p, 'o-', ms=4, alpha=0.8, label='asset price')
261+
ax.legend()
262+
ax.set_xlabel('time')
263+
plt.show()
264+
265+
```
266+
267+
The weighted averaging associated with the present value calculation largely
268+
eliminates the cycles.
269+
270+
271+
```{solution-end}
272+
```
211273
212274
## Analytical Expressions
213275
214276
It can be verified that the inverse of the matrix $A$ in {eq}`eq:pieq` is
215277
216-
+++
217278
218279
$$ A^{-1} =
219280
\begin{bmatrix}
@@ -323,7 +384,6 @@ $$
323384
p_t = c \delta^{-t}
324385
$$ (eq:bubble)
325386
326-
+++
327387
328388
## Gross rate of return
329389
@@ -341,18 +401,22 @@ $$
341401
R_t = \delta^{-1} > 1 .
342402
$$
343403
344-
+++
345404
346-
<!-- #endregion -->
405+
## Exercises
347406
348-
## Experiments
349407
350-
We'll try various settings for $\vec d, p_{T+1}^*$:
408+
```{exercise-start}
409+
:label: pv_ex_a
410+
```
351411
352-
* $p_{T+1}^* = 0, d_t = g^t d_0$ to get a modified version of the Gordon growth formula
353-
354-
* $p_{T+1}^* = g^{T+1} d_0, d_t = g^t d_0$ to get the plain vanilla Gordon growth formula
355-
356-
* $p_{T+1}^* = 0, d_t = 0$ to get a worthless stock
357-
358-
* $p_{T+1}^* = c \delta^{-(T+1)}, d_t = 0$ to get a bubble stock
412+
Give analytical expressions for the asset price $p_t$ under the
413+
following settings for $d$ and $p_{T+1}^*$:
414+
415+
1. $p_{T+1}^* = 0, d_t = g^t d_0$ (a modified version of the Gordon growth formula)
416+
1. $p_{T+1}^* = g^{T+1} d_0, d_t = g^t d_0$ (the plain vanilla Gordon growth formula)
417+
1. $p_{T+1}^* = 0, d_t = 0$ (price of a worthless stock)
418+
1. $p_{T+1}^* = c \delta^{-(T+1)}, d_t = 0$ (price of a pure bubble stock)
419+
420+
421+
```{exercise-end}
422+
```

0 commit comments

Comments
 (0)