Skip to content

Commit 3f8387d

Browse files
committed
fix_future_warning
1 parent ad11533 commit 3f8387d

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

lectures/inequality.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ jupytext:
44
extension: .md
55
format_name: myst
66
format_version: 0.13
7-
jupytext_version: 1.14.1
7+
jupytext_version: 1.14.5
88
kernelspec:
99
display_name: Python 3 (ipykernel)
1010
language: python
@@ -145,7 +145,7 @@ households own just over 40\% of total wealth.
145145
---
146146
mystnb:
147147
figure:
148-
caption: Lorenz curve of simulated data
148+
caption: "Lorenz curve of simulated data"
149149
name: lorenz_simulated
150150
---
151151
n = 2000
@@ -551,7 +551,7 @@ The following code uses the data from dataframe ``df_income_wealth`` to generate
551551
552552
# transfer the survey weights from absolute into relative values
553553
df1 = df_income_wealth
554-
df2 = df1.groupby('year').sum().reset_index() # group
554+
df2 = df1.groupby('year').sum(numeric_only=True).reset_index() # group
555555
df3 = df2[['year', 'weights']]
556556
df3.columns = 'year', 'r_weights'
557557
df4 = pd.merge(df3, df1, how="left", on=["year"])
@@ -570,9 +570,9 @@ df7 = df4[df4['ti_groups'] == 'Top 10%']
570570
571571
# calculate the sum of weighted top 10% by net wealth, total income and labor income.
572572
573-
df5 = df4.groupby('year').sum().reset_index()
574-
df8 = df6.groupby('year').sum().reset_index()
575-
df9 = df7.groupby('year').sum().reset_index()
573+
df5 = df4.groupby('year').sum(numeric_only=True).reset_index()
574+
df8 = df6.groupby('year').sum(numeric_only=True).reset_index()
575+
df9 = df7.groupby('year').sum(numeric_only=True).reset_index()
576576
577577
df5['weighted_n_wealth_top10'] = df8['weighted_n_wealth']
578578
df5['weighted_t_income_top10'] = df9['weighted_t_income']

0 commit comments

Comments
 (0)