@@ -4,7 +4,7 @@ jupytext:
4
4
extension : .md
5
5
format_name : myst
6
6
format_version : 0.13
7
- jupytext_version : 1.14.1
7
+ jupytext_version : 1.14.5
8
8
kernelspec :
9
9
display_name : Python 3 (ipykernel)
10
10
language : python
@@ -145,7 +145,7 @@ households own just over 40\% of total wealth.
145
145
---
146
146
mystnb:
147
147
figure:
148
- caption: Lorenz curve of simulated data
148
+ caption: " Lorenz curve of simulated data"
149
149
name: lorenz_simulated
150
150
---
151
151
n = 2000
@@ -551,7 +551,7 @@ The following code uses the data from dataframe ``df_income_wealth`` to generate
551
551
552
552
# transfer the survey weights from absolute into relative values
553
553
df1 = df_income_wealth
554
- df2 = df1.groupby('year').sum().reset_index() # group
554
+ df2 = df1.groupby('year').sum(numeric_only=True ).reset_index() # group
555
555
df3 = df2[['year', 'weights']]
556
556
df3.columns = 'year', 'r_weights'
557
557
df4 = pd.merge(df3, df1, how="left", on=["year"])
@@ -570,9 +570,9 @@ df7 = df4[df4['ti_groups'] == 'Top 10%']
570
570
571
571
# calculate the sum of weighted top 10% by net wealth, total income and labor income.
572
572
573
- df5 = df4.groupby('year').sum().reset_index()
574
- df8 = df6.groupby('year').sum().reset_index()
575
- df9 = df7.groupby('year').sum().reset_index()
573
+ df5 = df4.groupby('year').sum(numeric_only=True ).reset_index()
574
+ df8 = df6.groupby('year').sum(numeric_only=True ).reset_index()
575
+ df9 = df7.groupby('year').sum(numeric_only=True ).reset_index()
576
576
577
577
df5['weighted_n_wealth_top10'] = df8['weighted_n_wealth']
578
578
df5['weighted_t_income_top10'] = df9['weighted_t_income']
0 commit comments