Skip to content

Commit 116fa63

Browse files
committed
fix_label
1 parent 450250e commit 116fa63

File tree

3 files changed

+56
-7
lines changed

3 files changed

+56
-7
lines changed
Loading
Loading

lectures/cross_section.md

Lines changed: 56 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -22,9 +22,7 @@ In addition to what's in Anaconda, this lecture will need the following librarie
2222
```{code-cell} ipython3
2323
:tags: [hide-output]
2424
25-
!pip install quantecon
26-
!pip install --upgrade yfinance
27-
!pip install pandas_datareader
25+
!pip install --upgrade yfinance quantecon pandas_datareader statsmodels interpolation
2826
```
2927

3028
We run the following code to prepare for the lecture:
@@ -270,7 +268,7 @@ distribution](https://en.wikipedia.org/wiki/Cauchy_distribution), which is
270268
heavy-tailed.
271269

272270
(light_heavy_fig1)=
273-
```{figure} /_static/lecture_specific/heavy_tails/light_heavy_fig1.png
271+
```{figure} /_static/lecture_specific/cross_section/light_heavy_fig1.png
274272
275273
```
276274

@@ -461,6 +459,51 @@ plt.show()
461459
```
462460

463461

462+
## Pareto Tails
463+
464+
TODO Hi John I added this part with equations you cited below from lecture heavy_tails
465+
466+
One specific class of heavy-tailed distributions has been found repeatedly in
467+
economic and social phenomena: the class of so-called power laws.
468+
469+
Specifically, given $\alpha > 0$, a nonnegative random variable $X$ is said to
470+
have a **Pareto tail** with **tail index** $\alpha$ if
471+
472+
```{math}
473+
:label: plrt
474+
475+
\lim_{x \to \infty} x^\alpha \, \mathbb P\{X > x\} = c.
476+
```
477+
478+
The limit {eq}`plrt` implies the existence of positive constants $b$ and $\bar x$ such that $\mathbb P\{X > x\} \geq b x^{- \alpha}$ whenever $x \geq \bar x$.
479+
480+
The implication is that $\mathbb P\{X > x\}$ converges to zero no faster than $x^{-\alpha}$.
481+
482+
In some sources, a random variable obeying {eq}`plrt` is said to have a **power law tail**.
483+
484+
One example is the [Pareto distribution](https://en.wikipedia.org/wiki/Pareto_distribution).
485+
486+
If $X$ has the Pareto distribution, then there are positive constants $\bar x$
487+
and $\alpha$ such that
488+
489+
```{math}
490+
:label: pareto
491+
492+
\mathbb P\{X > x\} =
493+
\begin{cases}
494+
\left( \bar x/x \right)^{\alpha}
495+
& \text{ if } x \geq \bar x
496+
\\
497+
1
498+
& \text{ if } x < \bar x
499+
\end{cases}
500+
```
501+
502+
It is easy to see that $\mathbb P\{X > x\}$ satisfies {eq}`plrt`.
503+
504+
Thus, in line with the terminology, Pareto distributed random variables have a Pareto tail.
505+
506+
464507
## Exercises
465508

466509
```{exercise}
@@ -496,6 +539,11 @@ Use `np.random.seed(11)` to set the seed.
496539
```{exercise}
497540
:label: ht_ex4
498541
542+
(rank_size_fig1)=
543+
```{figure} /_static/lecture_specific/cross_section/rank_size_fig1.png
544+
545+
```
546+
499547
Replicate the rank-size plot figure {ref}`presented above <rank_size_fig1>`.
500548

501549
If you like you can use the function `qe.rank_size` from the `quantecon` library to generate the plots.
@@ -533,6 +581,9 @@ Present discounted value of tax revenue will be estimated by
533581
1. multiplying by the tax rate, and
534582
1. summing the results with discounting to obtain present value.
535583
584+
If $X$ has the Pareto distribution, then there are positive constants $\bar x$
585+
and $\alpha$ such that
586+
536587
The Pareto distribution is assumed to take the form {eq}`pareto` with $\bar x = 1$ and $\alpha = 1.05$.
537588
538589
(The value the tail index $\alpha$ is plausible given the data {cite}`gabaix2016power`.)
@@ -555,7 +606,6 @@ try to track individual firms given the current distribution. We will discuss
555606
firm dynamics in later lectures.)
556607
```
557608

558-
## Solutions
559609

560610
```{solution-start} ht_ex1
561611
:class: dropdown
@@ -596,6 +646,7 @@ plt.show()
596646

597647
```{solution-start} ht_ex2
598648
:class: dropdown
649+
```
599650

600651
Let $X$ have a Pareto tail with tail index $\alpha$ and let $F$ be its cdf.
601652

@@ -619,8 +670,6 @@ $$
619670
We know that $\int_{\bar x}^\infty x^{r-\alpha-1} x = \infty$ whenever $r - \alpha - 1 \geq -1$.
620671

621672
Since $r \geq \alpha$, we have $\mathbb E X^r = \infty$.
622-
```
623-
624673

625674
```{solution-end}
626675
```

0 commit comments

Comments
 (0)