You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The limit {eq}`plrt` implies the existence of positive constants $b$ and $\bar x$ such that $\mathbb P\{X > x\} \geq b x^{- \alpha}$ whenever $x \geq \bar x$.
479
+
480
+
The implication is that $\mathbb P\{X > x\}$ converges to zero no faster than $x^{-\alpha}$.
481
+
482
+
In some sources, a random variable obeying {eq}`plrt` is said to have a **power law tail**.
483
+
484
+
One example is the [Pareto distribution](https://en.wikipedia.org/wiki/Pareto_distribution).
485
+
486
+
If $X$ has the Pareto distribution, then there are positive constants $\bar x$
487
+
and $\alpha$ such that
488
+
489
+
```{math}
490
+
:label: pareto
491
+
492
+
\mathbb P\{X > x\} =
493
+
\begin{cases}
494
+
\left( \bar x/x \right)^{\alpha}
495
+
& \text{ if } x \geq \bar x
496
+
\\
497
+
1
498
+
& \text{ if } x < \bar x
499
+
\end{cases}
500
+
```
501
+
502
+
It is easy to see that $\mathbb P\{X > x\}$ satisfies {eq}`plrt`.
503
+
504
+
Thus, in line with the terminology, Pareto distributed random variables have a Pareto tail.
505
+
506
+
464
507
## Exercises
465
508
466
509
```{exercise}
@@ -496,6 +539,11 @@ Use `np.random.seed(11)` to set the seed.
0 commit comments