@@ -11,21 +11,17 @@ kernelspec:
11
11
name : python3
12
12
---
13
13
14
-
14
+ (input_output)=
15
15
# Input-Output Models
16
16
17
- ## Overview
18
-
19
- The following figure illustrates a network of linkages between 71 sectors obtained from the US Bureau of Economic Analysis’s
20
- 2019 Input-Output Accounts Data.
17
+ ``` {contents} Contents
18
+ :depth: 2
19
+ ```
21
20
22
21
``` {code-cell} ipython3
23
- ---
24
- jupyter:
25
- outputs_hidden: true
26
- source_hidden: true
27
- ---
28
- pip install --upgrade quantecon_book_networks
22
+ :tags: [hide-output]
23
+
24
+ !pip install --upgrade quantecon_book_networks quantecon pandas_datareader
29
25
```
30
26
31
27
In this lecture, we will need the following library.
@@ -37,22 +33,29 @@ import networkx as nx
37
33
```
38
34
39
35
``` {code-cell} ipython3
40
- # hide
36
+ :tags: [ hide-input]
41
37
42
38
import quantecon as qe
43
39
import quantecon_book_networks
44
40
import quantecon_book_networks.input_output as qbn_io
45
41
import quantecon_book_networks.plotting as qbn_plt
46
42
import quantecon_book_networks.data as qbn_data
47
- ch2_data = qbn_data.production()
48
43
import matplotlib.pyplot as plt
49
44
import matplotlib.cm as cm
50
45
import matplotlib.colors as plc
51
46
from matplotlib import cm
52
47
quantecon_book_networks.config("matplotlib")
53
48
import matplotlib as mpl
54
49
mpl.rcParams.update(mpl.rcParamsDefault)
50
+ ```
51
+
52
+ ## Overview
55
53
54
+ The following figure illustrates a network of linkages between 71 sectors obtained from the US Bureau of Economic Analysis’s
55
+ 2019 Input-Output Accounts Data.
56
+
57
+ ``` {code-cell} ipython3
58
+ ch2_data = qbn_data.production()
56
59
codes_71 = ch2_data['us_sectors_71']['codes']
57
60
A_71 = ch2_data['us_sectors_71']['adjacency_matrix']
58
61
X_71 = ch2_data['us_sectors_71']['total_industry_sales']
@@ -74,8 +77,6 @@ qbn_plt.plot_graph(A_71, X_71, ax, codes_71,
74
77
plt.show()
75
78
```
76
79
77
- +++
78
-
79
80
An arrow from $i$ to $j$ implies that sector $i$ supplies some of its output as raw material to sector $j$.
80
81
81
82
Economies are characterised by many such complex and interdependent multisector production networks.
@@ -86,7 +87,7 @@ This model's key aspect is its simplicity.
86
87
87
88
In this lecture, we introduce the standard input-ouput model and approach it as a [ linear programming] (link to lpp lecture) problem.
88
89
89
- +++
90
+ +++
90
91
91
92
## Input Output Analysis
92
93
@@ -117,7 +118,7 @@ To illustrate ideas, we begin by setting $n =2$.
117
118
The following is a simple illustration of this network.
118
119
119
120
``` {code-cell} ipython3
120
- :tags: [hide_input ]
121
+ :tags: [hide-input ]
121
122
122
123
G = nx.DiGraph()
123
124
@@ -146,8 +147,6 @@ plt.text(0.955,-0.05, r'$x_{12}$')
146
147
plt.show()
147
148
```
148
149
149
- +++
150
-
151
150
## Feasible allocations must satisfy
152
151
153
152
$$
333
332
334
333
where $L$ is a vector of labor services used in each industry.
335
334
335
+ ```{code-cell} ipython3
336
+
337
+ ```
0 commit comments