-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVocab_stats.py
125 lines (91 loc) · 4.79 KB
/
Vocab_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import json
import argparse
from collections import Counter, defaultdict
import numpy as np
import csv
import pandas as pd
def Vocab_by_freq(file_name, lower_Vocab_count_threshold=0):
with open(file_name, 'r') as f:
read_cases_manualATM_text_list = json.load(f)
read_cases_manualATM_text_list_flat = [item for sublist in read_cases_manualATM_text_list for item in sublist]
#print('read_cases_manualATM_text_list_flat:', read_cases_manualATM_text_list_flat)
Vocab = Counter(read_cases_manualATM_text_list_flat)
sorted_Vocab = {k: v for k, v in sorted(Vocab.items(), key=lambda item: item[1], reverse=True) if v > lower_Vocab_count_threshold}
tf_corpus_dict = {k: v/len(read_cases_manualATM_text_list_flat) for k, v in sorted_Vocab.items()}
print("len(read_cases_manualATM_text_list_flat):", len(read_cases_manualATM_text_list_flat))
print("tf_corpus_dict:", tf_corpus_dict)
with open('tf_corpus_dict_Dec04.json', 'w') as f:
json.dump(tf_corpus_dict, f)
with open('tf_corpus_dict_Dec04.json', 'r') as f:
tf_corpus_dict = json.load(f)
doc_count_dict = {word:0 for word in sorted_Vocab.keys()}
tf_doc_max_dict = {word:0 for word in sorted_Vocab.keys()}
for sub_list in read_cases_manualATM_text_list:
doc_level_Vocab = Counter(sub_list)
for word, count in doc_level_Vocab.items():
#print('word:', word)
#print('count:', count)
if word in tf_doc_max_dict:
tf_doc_max_dict[word] = max(tf_doc_max_dict[word], count/len(sub_list))
print('tf_doc_max_dict:', tf_doc_max_dict)
with open('tf_doc_max_dict_Dec04.json', 'w') as f:
json.dump(tf_doc_max_dict, f)
with open('tf_doc_max_dict_Dec04.json', 'r') as f:
tf_doc_max_dict = json.load(f)
for word in sorted_Vocab.keys():
#print('word:', word)
for sub_list in read_cases_manualATM_text_list:
if word in sub_list:
doc_count_dict[word] += 1
#print('doc_count_dict:', doc_count_dict)
idf_dict = {k: np.log(len(read_cases_manualATM_text_list)/v) for k, v in doc_count_dict.items()}
#print('idf_dict:', idf_dict)
with open('idf_dict_Dec04.json', 'w') as f:
json.dump(idf_dict, f)
with open('idf_dict_Dec04.json', 'r') as f:
idf_dict = json.load(f)
tf_idf_corpus_dict = {word: tf_corpus_dict[word]*idf_dict[word] for word in sorted_Vocab.keys()}
print('tf_idf_corpus_dict:', tf_idf_corpus_dict)
with open('tf_idf_corpus_dict_Dec04.json', 'w') as f:
json.dump(tf_idf_corpus_dict, f)
with open('tf_idf_corpus_dict_Dec04.json', 'r') as f:
tf_idf_corpus_dict = json.load(f)
tf_idf_doc_max_dict = {word: tf_doc_max_dict[word]*idf_dict[word] for word in sorted_Vocab.keys()}
print('tf_idf_doc_max_dict:', tf_idf_doc_max_dict)
with open('tf_idf_doc_max_dict_Dec04.json', 'w') as f:
json.dump(tf_idf_doc_max_dict, f)
with open('tf_idf_doc_max_dict_Dec04.json', 'r') as f:
tf_idf_doc_max_dict = json.load(f)
Vocab_stats_dict = {word: [tf_corpus_dict[word], tf_doc_max_dict[word], idf_dict[word], tf_idf_corpus_dict[word], tf_idf_doc_max_dict[word]] for word in sorted_Vocab.keys()}
print('Vocab_stats_dict:', Vocab_stats_dict)
with open('Vocab_stats_dict_Dec04.json', 'w') as f:
json.dump(Vocab_stats_dict, f)
with open('Vocab_stats_dict_Dec04.json', 'r') as f:
Vocab_stats_dict = json.load(f)
with open('sorted_Vocab_Dec04.json', 'w') as f:
json.dump(sorted_Vocab, f)
with open('sorted_Vocab_Dec04.json', 'r') as f:
sorted_Vocab = json.load(f)
with open('sorted_Vocab_Dec04.txt', "w") as f:
n = f.write(str(sorted_Vocab))
#print('sorted_Vocab:', sorted_Vocab)
print('len(sorted_Vocab):', len(sorted_Vocab))
def export_stats_to_csv():
with open('Vocab_stats_dict_Dec04.json', 'r') as f:
Vocab_stats_dict = json.load(f)
with open('Vocab_stats_Dec04.csv', 'w') as file:
writer = csv.writer(file)
writer.writerow(['word', 'corpus-level term freq', 'max doc-level term freq', 'inverse doc freq', 'corpus-level tf-idf', 'max doc-level tf-idf'])
for word, stats_list in Vocab_stats_dict.items():
row = [word] + stats_list
print('row:', row)
writer.writerow(row)
Vocab_stats_pd = pd.read_csv('Vocab_stats_Dec04.csv')
print("Number of lines :", len(Vocab_stats_pd))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Get the vocabulary sorted by frequency")
parser.add_argument('--file_name', type=str, default="read_cases_manualATM_text_list_Dec04.json")
parser.add_argument('--lower_Vocab_count_threshold', type=int, default=0)
flags = parser.parse_args()
Vocab_by_freq(flags.file_name, flags.lower_Vocab_count_threshold)
export_stats_to_csv()