-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhol_ax13.mm
91 lines (87 loc) · 1.51 KB
/
hol_ax13.mm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
$( Theory: hol_ax13 $)
$c
type
term
|-
:
|=
bool
->
(
)
,
=
T.
[
]
==>
$.
$v al be A B C F R S T $.
hal $f type al $.
hbe $f type be $.
ta $f term A $.
tb $f term B $.
tc $f term C $.
tf $f term F $.
tr $f term R $.
ts $f term S $.
tt $f term T $.
hb $a type bool $.
kc $a term ( F T ) $.
ke $a term = $.
kt $a term T. $.
kbr $a term [ A F B ] $.
kct $a term ( A , B ) $.
${
simpr.0 $e |- R : bool $.
simpr.1 $e |- S : bool $.
simpr $a |- ( R , S ) |= S $.
$}
wtru $a |- T. : bool $.
${
wct.0 $e |- S : bool $.
wct.1 $e |- T : bool $.
wct $a |- ( S , T ) : bool $.
$}
${
wc.0 $e |- F : ( al -> be ) $.
wc.1 $e |- T : al $.
wc $a |- ( F T ) : be $.
$}
${
adantr.0 $e |- R |= T $.
adantr.1 $e |- S : bool $.
adantr $a |- ( R , S ) |= T $.
$}
${
weqi.0 $e |- A : al $.
weqi.1 $e |- B : al $.
weqi $a |- [ A = B ] : bool $.
$}
${
mpbi.0 $e |- R |= A $.
mpbi.1 $e |- R |= [ A = B ] $.
mpbi $a |- R |= B $.
$}
${
ceq2.0 $e |- F : ( al -> be ) $.
ceq2.1 $e |- A : al $.
ceq2.2 $e |- R |= [ A = B ] $.
ceq2 $a |- R |= [ ( F A ) = ( F B ) ] $.
$}
tim $a term ==> $.
${
ex.0 $e |- ( R , S ) |= T $.
ex $a |- R |= [ S ==> T ] $.
$}
${
ax13.0 $e |- A : al $.
ax13.1 $e |- B : al $.
ax13.2 $e |- C : ( al -> bool ) $.
ax13 $p |- T. |= [ [ A = B ] ==> [ ( C A ) ==> ( C B ) ] ] $=
( kt ke kbr kc tim kct wtru weqi wct hb wc simpr ex ceq2 adantr mpbi )
HBCIJZDBKZDCKZLJHUDMZUEUFUEUFUGUEMUGUEHUDNABCEFOZPAQDBGERZSUGUEUEUFIJAQBCDUGGEH
UDNUHSUAUIUBUCTT
$.
$}
$( hol_ax13 End $)