This example runs the LIBERO benchmark: https://github.com/Lifelong-Robot-Learning/LIBERO
Note: When updating requirements.txt in this directory, there is an additional flag --extra-index-url https://download.pytorch.org/whl/cu113
that must be added to the uv pip compile
command.
This example requires git submodules to be initialized. Don't forget to run:
git submodule update --init --recursive
# Grant access to the X11 server:
sudo xhost +local:docker
export SERVER_ARGS="--env LIBERO"
docker compose -f examples/libero/compose.yml up --build
Terminal window 1:
# Create virtual environment
uv venv --python 3.8 examples/libero/.venv
source examples/libero/.venv/bin/activate
uv pip sync examples/libero/requirements.txt third_party/libero/requirements.txt --extra-index-url https://download.pytorch.org/whl/cu113 --index-strategy=unsafe-best-match
uv pip install -e packages/openpi-client
uv pip install -e third_party/libero
export PYTHONPATH=$PYTHONPATH:$PWD/third_party/libero
# Run the simulation
python examples/libero/main.py
Terminal window 2:
# Run the server
uv run scripts/serve_policy.py --env LIBERO
If you follow the training instructions and hyperparameters in the pi0_libero
and pi0_fast_libero
configs, you should get results similar to the following:
Model | Libero Spatial | Libero Object | Libero Goal | Libero 10 | Average |
---|---|---|---|---|---|
π0-FAST @ 30k (finetuned) | 96.4 | 96.8 | 88.6 | 60.2 | 85.5 |
π0 @ 30k (finetuned) | 96.8 | 98.8 | 95.8 | 85.2 | 94.15 |
Note that the hyperparameters for these runs are not tuned and