-
Notifications
You must be signed in to change notification settings - Fork 954
/
Copy pathinference_speed_test.py
119 lines (90 loc) · 4.11 KB
/
inference_speed_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
"""
Inference Speed Test
Example:
Run inference on random noise input for fixed computation setting.
(i.e. mode in ['full', 'sampling'])
python inference_speed_test.py \
--model-type mattingrefine \
--model-backbone resnet50 \
--model-backbone-scale 0.25 \
--model-refine-mode sampling \
--model-refine-sample-pixels 80000 \
--batch-size 1 \
--resolution 1920 1080 \
--backend pytorch \
--precision float32
Run inference on provided image input for dynamic computation setting.
(i.e. mode in ['thresholding'])
python inference_speed_test.py \
--model-type mattingrefine \
--model-backbone resnet50 \
--model-backbone-scale 0.25 \
--model-checkpoint "PATH_TO_CHECKPOINT" \
--model-refine-mode thresholding \
--model-refine-threshold 0.7 \
--batch-size 1 \
--backend pytorch \
--precision float32 \
--image-src "PATH_TO_IMAGE_SRC" \
--image-bgr "PATH_TO_IMAGE_BGR"
"""
import argparse
import torch
from torchvision.transforms.functional import to_tensor
from tqdm import tqdm
from PIL import Image
from model import MattingBase, MattingRefine
# --------------- Arguments ---------------
parser = argparse.ArgumentParser()
parser.add_argument('--model-type', type=str, required=True, choices=['mattingbase', 'mattingrefine'])
parser.add_argument('--model-backbone', type=str, required=True, choices=['resnet101', 'resnet50', 'mobilenetv2'])
parser.add_argument('--model-backbone-scale', type=float, default=0.25)
parser.add_argument('--model-checkpoint', type=str, default=None)
parser.add_argument('--model-refine-mode', type=str, default='sampling', choices=['full', 'sampling', 'thresholding'])
parser.add_argument('--model-refine-sample-pixels', type=int, default=80_000)
parser.add_argument('--model-refine-threshold', type=float, default=0.7)
parser.add_argument('--model-refine-kernel-size', type=int, default=3)
parser.add_argument('--batch-size', type=int, default=1)
parser.add_argument('--resolution', type=int, default=None, nargs=2)
parser.add_argument('--precision', type=str, default='float32', choices=['float32', 'float16'])
parser.add_argument('--backend', type=str, default='pytorch', choices=['pytorch', 'torchscript'])
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
parser.add_argument('--image-src', type=str, default=None)
parser.add_argument('--image-bgr', type=str, default=None)
args = parser.parse_args()
assert type(args.image_src) == type(args.image_bgr), 'Image source and background must be provided together.'
assert (not args.image_src) != (not args.resolution), 'Must provide either a resolution or an image and not both.'
# --------------- Run Loop ---------------
device = torch.device(args.device)
# Load model
if args.model_type == 'mattingbase':
model = MattingBase(args.model_backbone)
if args.model_type == 'mattingrefine':
model = MattingRefine(
args.model_backbone,
args.model_backbone_scale,
args.model_refine_mode,
args.model_refine_sample_pixels,
args.model_refine_threshold,
args.model_refine_kernel_size,
refine_prevent_oversampling=False)
if args.model_checkpoint:
model.load_state_dict(torch.load(args.model_checkpoint), strict=False)
if args.precision == 'float32':
precision = torch.float32
else:
precision = torch.float16
if args.backend == 'torchscript':
model = torch.jit.script(model)
model = model.eval().to(device=device, dtype=precision)
# Load data
if not args.image_src:
src = torch.rand((args.batch_size, 3, *args.resolution[::-1]), device=device, dtype=precision)
bgr = torch.rand((args.batch_size, 3, *args.resolution[::-1]), device=device, dtype=precision)
else:
src = to_tensor(Image.open(args.image_src)).unsqueeze(0).repeat(args.batch_size, 1, 1, 1).to(device=device, dtype=precision)
bgr = to_tensor(Image.open(args.image_bgr)).unsqueeze(0).repeat(args.batch_size, 1, 1, 1).to(device=device, dtype=precision)
# Loop
with torch.no_grad():
for _ in tqdm(range(1000)):
model(src, bgr)