-
Notifications
You must be signed in to change notification settings - Fork 411
/
Copy pathinput_adcs.cpp
374 lines (333 loc) · 11.9 KB
/
input_adcs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, [email protected]
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <Arduino.h>
#include "input_adcs.h"
#include "utility/pdb.h"
#include "utility/dspinst.h"
#if defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
#define COEF_HPF_DCBLOCK (1048300<<10) // DC Removal filter coefficient in S1.30
DMAMEM __attribute__((aligned(32))) static uint16_t left_buffer[AUDIO_BLOCK_SAMPLES];
DMAMEM __attribute__((aligned(32))) static uint16_t right_buffer[AUDIO_BLOCK_SAMPLES];
audio_block_t * AudioInputAnalogStereo::block_left = NULL;
audio_block_t * AudioInputAnalogStereo::block_right = NULL;
uint16_t AudioInputAnalogStereo::offset_left = 0;
uint16_t AudioInputAnalogStereo::offset_right = 0;
int32_t AudioInputAnalogStereo::hpf_y1[2] = { 0, 0 };
int32_t AudioInputAnalogStereo::hpf_x1[2] = { 0, 0 };
bool AudioInputAnalogStereo::update_responsibility = false;
DMAChannel AudioInputAnalogStereo::dma0(false);
DMAChannel AudioInputAnalogStereo::dma1(false);
static int analogReadADC1(uint8_t pin);
void AudioInputAnalogStereo::init(uint8_t pin0, uint8_t pin1)
{
uint32_t tmp;
//pinMode(32, OUTPUT);
//pinMode(33, OUTPUT);
// Configure the ADC and run at least one software-triggered
// conversion. This completes the self calibration stuff and
// leaves the ADC in a state that's mostly ready to use
analogReadRes(16);
analogReference(INTERNAL); // range 0 to 1.2 volts
#if F_BUS == 96000000 || F_BUS == 48000000 || F_BUS == 24000000
analogReadAveraging(8);
ADC1_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(1);
#else
analogReadAveraging(4);
ADC1_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(0);
#endif
// Note for review:
// Probably not useful to spin cycles here stabilizing
// since DC blocking is similar to te external analog filters
tmp = (uint16_t) analogRead(pin0);
tmp = ( ((int32_t) tmp) << 14);
hpf_x1[0] = tmp; // With constant DC level x1 would be x0
hpf_y1[0] = 0; // Output will settle here when stable
tmp = (uint16_t) analogReadADC1(pin1);
tmp = ( ((int32_t) tmp) << 14);
hpf_x1[1] = tmp; // With constant DC level x1 would be x0
hpf_y1[1] = 0; // Output will settle here when stable
// set the programmable delay block to trigger the ADC at 44.1 kHz
//if (!(SIM_SCGC6 & SIM_SCGC6_PDB)
//|| (PDB0_SC & PDB_CONFIG) != PDB_CONFIG
//|| PDB0_MOD != PDB_PERIOD
//|| PDB0_IDLY != 1
//|| PDB0_CH0C1 != 0x0101) {
SIM_SCGC6 |= SIM_SCGC6_PDB;
PDB0_IDLY = 1;
PDB0_MOD = PDB_PERIOD;
PDB0_SC = PDB_CONFIG | PDB_SC_LDOK;
PDB0_SC = PDB_CONFIG | PDB_SC_SWTRIG;
PDB0_CH0C1 = 0x0101;
PDB0_CH1C1 = 0x0101;
//}
// enable the ADC for hardware trigger and DMA
ADC0_SC2 |= ADC_SC2_ADTRG | ADC_SC2_DMAEN;
ADC1_SC2 |= ADC_SC2_ADTRG | ADC_SC2_DMAEN;
// set up a DMA channel to store the ADC data
dma0.begin(true);
dma1.begin(true);
// ADC0_RA = 0x4003B010
// ADC1_RA = 0x400BB010
dma0.TCD->SADDR = &ADC0_RA;
dma0.TCD->SOFF = 0;
dma0.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
dma0.TCD->NBYTES_MLNO = 2;
dma0.TCD->SLAST = 0;
dma0.TCD->DADDR = left_buffer;
dma0.TCD->DOFF = 2;
dma0.TCD->CITER_ELINKNO = sizeof(left_buffer) / 2;
dma0.TCD->DLASTSGA = -sizeof(left_buffer);
dma0.TCD->BITER_ELINKNO = sizeof(left_buffer) / 2;
dma0.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
dma1.TCD->SADDR = &ADC1_RA;
dma1.TCD->SOFF = 0;
dma1.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
dma1.TCD->NBYTES_MLNO = 2;
dma1.TCD->SLAST = 0;
dma1.TCD->DADDR = right_buffer;
dma1.TCD->DOFF = 2;
dma1.TCD->CITER_ELINKNO = sizeof(right_buffer) / 2;
dma1.TCD->DLASTSGA = -sizeof(right_buffer);
dma1.TCD->BITER_ELINKNO = sizeof(right_buffer) / 2;
dma1.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
dma0.triggerAtHardwareEvent(DMAMUX_SOURCE_ADC0);
//dma1.triggerAtHardwareEvent(DMAMUX_SOURCE_ADC1);
dma1.triggerAtTransfersOf(dma0);
dma1.triggerAtCompletionOf(dma0);
update_responsibility = update_setup();
dma0.enable();
dma1.enable();
dma0.attachInterrupt(isr0);
dma1.attachInterrupt(isr1);
}
void AudioInputAnalogStereo::isr0(void)
{
uint32_t daddr, offset;
const uint16_t *src, *end;
uint16_t *dest;
daddr = (uint32_t)(dma0.TCD->DADDR);
dma0.clearInterrupt();
//digitalWriteFast(32, HIGH);
if (daddr < (uint32_t)left_buffer + sizeof(left_buffer) / 2) {
// DMA is receiving to the first half of the buffer
// need to remove data from the second half
src = (uint16_t *)&left_buffer[AUDIO_BLOCK_SAMPLES/2];
end = (uint16_t *)&left_buffer[AUDIO_BLOCK_SAMPLES];
} else {
// DMA is receiving to the second half of the buffer
// need to remove data from the first half
src = (uint16_t *)&left_buffer[0];
end = (uint16_t *)&left_buffer[AUDIO_BLOCK_SAMPLES/2];
//if (update_responsibility) AudioStream::update_all();
}
if (block_left != NULL) {
offset = offset_left;
if (offset > AUDIO_BLOCK_SAMPLES/2) offset = AUDIO_BLOCK_SAMPLES/2;
offset_left = offset + AUDIO_BLOCK_SAMPLES/2;
dest = (uint16_t *)&(block_left->data[offset]);
do {
*dest++ = *src++;
} while (src < end);
}
//digitalWriteFast(32, LOW);
}
void AudioInputAnalogStereo::isr1(void)
{
uint32_t daddr, offset;
const uint16_t *src, *end;
uint16_t *dest;
daddr = (uint32_t)(dma1.TCD->DADDR);
dma1.clearInterrupt();
//digitalWriteFast(33, HIGH);
if (daddr < (uint32_t)right_buffer + sizeof(right_buffer) / 2) {
// DMA is receiving to the first half of the buffer
// need to remove data from the second half
src = (uint16_t *)&right_buffer[AUDIO_BLOCK_SAMPLES/2];
end = (uint16_t *)&right_buffer[AUDIO_BLOCK_SAMPLES];
if (update_responsibility) AudioStream::update_all();
} else {
// DMA is receiving to the second half of the buffer
// need to remove data from the first half
src = (uint16_t *)&right_buffer[0];
end = (uint16_t *)&right_buffer[AUDIO_BLOCK_SAMPLES/2];
}
if (block_right != NULL) {
offset = offset_right;
if (offset > AUDIO_BLOCK_SAMPLES/2) offset = AUDIO_BLOCK_SAMPLES/2;
offset_right = offset + AUDIO_BLOCK_SAMPLES/2;
dest = (uint16_t *)&(block_right->data[offset]);
do {
*dest++ = *src++;
} while (src < end);
}
//digitalWriteFast(33, LOW);
}
void AudioInputAnalogStereo::update(void)
{
audio_block_t *new_left=NULL, *out_left=NULL;
audio_block_t *new_right=NULL, *out_right=NULL;
int32_t tmp;
int16_t s, *p, *end;
//Serial.println("update");
// allocate new block (ok if both NULL)
new_left = allocate();
if (new_left == NULL) {
new_right = NULL;
} else {
new_right = allocate();
if (new_right == NULL) {
release(new_left);
new_left = NULL;
}
}
__disable_irq();
if (offset_left < AUDIO_BLOCK_SAMPLES || offset_right < AUDIO_BLOCK_SAMPLES) {
// the DMA hasn't filled up both blocks
if (block_left == NULL) {
block_left = new_left;
offset_left = 0;
new_left = NULL;
}
if (block_right == NULL) {
block_right = new_right;
offset_right = 0;
new_right = NULL;
}
__enable_irq();
if (new_left) release(new_left);
if (new_right) release(new_right);
return;
}
// the DMA filled blocks, so grab them and get the
// new blocks to the DMA, as quickly as possible
out_left = block_left;
out_right = block_right;
block_left = new_left;
block_right = new_right;
offset_left = 0;
offset_right = 0;
__enable_irq();
//
// DC Offset Removal Filter
// 1-pole digital high-pass filter implementation
// y = a*(x[n] - x[n-1] + y[n-1])
// The coefficient "a" is as follows:
// a = UNITY*e^(-2*pi*fc/fs)
// fc = 2 @ fs = 44100
//
// DC removal, LEFT
p = out_left->data;
end = p + AUDIO_BLOCK_SAMPLES;
do {
tmp = (uint16_t)(*p);
tmp = ( ((int32_t) tmp) << 14);
int32_t acc = hpf_y1[0] - hpf_x1[0];
acc += tmp;
hpf_y1[0] = FRACMUL_SHL(acc, COEF_HPF_DCBLOCK, 1);
hpf_x1[0] = tmp;
s = signed_saturate_rshift(hpf_y1[0], 16, 14);
*p++ = s;
} while (p < end);
// DC removal, RIGHT
p = out_right->data;
end = p + AUDIO_BLOCK_SAMPLES;
do {
tmp = (uint16_t)(*p);
tmp = ( ((int32_t) tmp) << 14);
int32_t acc = hpf_y1[1] - hpf_x1[1];
acc += tmp;
hpf_y1[1]= FRACMUL_SHL(acc, COEF_HPF_DCBLOCK, 1);
hpf_x1[1] = tmp;
s = signed_saturate_rshift(hpf_y1[1], 16, 14);
*p++ = s;
} while (p < end);
// then transmit the AC data
transmit(out_left, 0);
release(out_left);
transmit(out_right, 1);
release(out_right);
}
#if defined(__MK20DX256__)
static const uint8_t pin2sc1a[] = {
5, 14, 8+128, 9+128, 13, 12, 6, 7, 15, 4, 0, 19, 3, 19+128, // 0-13 -> A0-A13
5, 14, 8+128, 9+128, 13, 12, 6, 7, 15, 4, // 14-23 are A0-A9
255, 255, // 24-25 are digital only
5+192, 5+128, 4+128, 6+128, 7+128, 4+192, // 26-31 are A15-A20
255, 255, // 32-33 are digital only
0, 19, 3, 19+128, // 34-37 are A10-A13
26, // 38 is temp sensor,
18+128, // 39 is vref
23 // 40 is A14
};
#elif defined(__MK64FX512__) || defined(__MK66FX1M0__)
static const uint8_t pin2sc1a[] = {
5, 14, 8+128, 9+128, 13, 12, 6, 7, 15, 4, 3, 19+128, 14+128, 15+128, // 0-13 -> A0-A13
5, 14, 8+128, 9+128, 13, 12, 6, 7, 15, 4, // 14-23 are A0-A9
255, 255, 255, 255, 255, 255, 255, // 24-30 are digital only
14+128, 15+128, 17, 18, 4+128, 5+128, 6+128, 7+128, 17+128, // 31-39 are A12-A20
255, 255, 255, 255, 255, 255, 255, 255, 255, // 40-48 are digital only
10+128, 11+128, // 49-50 are A23-A24
255, 255, 255, 255, 255, 255, 255, // 51-57 are digital only
255, 255, 255, 255, 255, 255, // 58-63 (sd card pins) are digital only
3, 19+128, // 64-65 are A10-A11
23, 23+128,// 66-67 are A21-A22 (DAC pins)
1, 1+128, // 68-69 are A25-A26 (unused USB host port on Teensy 3.5)
26, // 70 is Temperature Sensor
18+128 // 71 is Vref
};
#endif
static int analogReadADC1(uint8_t pin)
{
ADC1_SC1A = 9;
while (1) {
if ((ADC1_SC1A & ADC_SC1_COCO)) {
return ADC1_RA;
}
}
if (pin >= sizeof(pin2sc1a)) return 0;
uint8_t channel = pin2sc1a[pin];
if ((channel & 0x80) == 0) return 0;
if (channel == 255) return 0;
if (channel & 0x40) {
ADC1_CFG2 &= ~ADC_CFG2_MUXSEL;
} else {
ADC1_CFG2 |= ADC_CFG2_MUXSEL;
}
ADC1_SC1A = channel & 0x3F;
while (1) {
if ((ADC1_SC1A & ADC_SC1_COCO)) {
return ADC1_RA;
}
}
}
#else
void AudioInputAnalogStereo::init(uint8_t pin0, uint8_t pin1)
{
}
void AudioInputAnalogStereo::update(void)
{
}
#endif