-
Notifications
You must be signed in to change notification settings - Fork 169
/
single_image_infer.py
278 lines (236 loc) · 11.4 KB
/
single_image_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datetime
from dataclasses import dataclass, field
import numpy as np
import paddle
from paddlenlp.generation import GenerationConfig
from paddlenlp.trainer import PdArgumentParser
from paddlenlp.transformers import AutoConfig, AutoInferenceModelForCausalLM
from paddlenlp.trl import llm_utils
from paddlemix.models.qwen2_vl import MIXQwen2Tokenizer
from paddlemix.models.qwen2_vl.modeling_qwen2_vl import (
Qwen2RotaryEmbedding,
Qwen2VLForConditionalGeneration,
)
from paddlemix.processors.qwen2_vl_processing import (
Qwen2VLImageProcessor,
Qwen2VLProcessor,
process_vision_info,
)
MODEL_NAME = "PaddleMIX/PPDocBee-2B-1129"
vl_model = Qwen2VLForConditionalGeneration.from_pretrained(MODEL_NAME, dtype="bfloat16")
# NOTE: (zhoukangkang、changwenbin) Because we only use the visual model here,
# in order to reduce video memory,we delete the language model.
del vl_model.model
paddle.device.cuda.empty_cache()
image_processor = Qwen2VLImageProcessor()
tokenizer = MIXQwen2Tokenizer.from_pretrained(MODEL_NAME)
processor = Qwen2VLProcessor(image_processor, tokenizer)
# min_pixels = 256*28*28 # 200704
# max_pixels = 1280*28*28 # 1003520
# processor = Qwen2VLProcessor(image_processor, tokenizer, min_pixels=min_pixels, max_pixels=max_pixels)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "paddlemix/demo_images/medal_table.png",
},
{"type": "text", "text": "识别这份表格的内容"},
],
}
]
# Preparation for inference
image_inputs, video_inputs = process_vision_info(messages)
question = messages[0]["content"][1]["text"]
image_pad_token = "<|vision_start|><|image_pad|><|vision_end|>"
text = f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{image_pad_token}{question}<|im_end|>\n<|im_start|>assistant\n"
@dataclass
class PredictorArgument:
# NOTE: (zhoukangkang、changwenbin)
# These parameters are all copied from https://github.com/PaddlePaddle/PaddleNLP/blob/develop/llm/predict/predictor.py
# For simplicity and ease of use, only the necessary parameters are retained here.
# If you want to know the exact meaning of these parameters, please refer to the link above.
model_name_or_path: str = field(default=None, metadata={"help": "The directory of model."})
src_length = 1024
min_length = 2
max_length = 2048
top_k = 0
top_p = 0.0
temperature = 0.95
repetition_penalty = 1.0
dtype: str = field(default=None, metadata={"help": "Model dtype"})
decode_strategy = "sampling"
mode = "dynamic"
inference_model = True
quant_type = ""
benchmark: bool = field(
default=False,
metadata={
"help": "If benchmark set as `True`, we will force model decode to max_length, which is helpful to compute throughput. "
},
)
use_fake_parameter = False
block_attn = True
block_size = 64
cachekv_int8_type = None
append_attn = True
total_max_length = 32768
speculate_method = None
@dataclass
class ModelArgument:
model_type: str = field(
default=None,
metadata={"help": "the type of the model"},
)
def init_llm_model_inputs(vision_model_inputs, inputs_embeds, arg_config: PredictorArgument):
assert len(inputs_embeds.shape) == 3
batch_size = inputs_embeds.shape[0]
model_inputs = {}
model_inputs["input_ids"] = paddle.zeros(shape=[batch_size, arg_config.total_max_length], dtype="int64")
model_inputs["inputs_embeds"] = inputs_embeds
# I dislike write (arg_config.total_max_length + arg_config.block_size -1 ) // arg_config.block_size
assert arg_config.total_max_length % arg_config.block_size == 0
model_inputs["top_p"] = paddle.full(shape=[batch_size, 1], fill_value=arg_config.top_p, dtype="float32")
model_inputs["temperature"] = paddle.full(
shape=[batch_size, 1], fill_value=arg_config.temperature, dtype="float32"
)
model_inputs["eos_token_id"] = paddle.to_tensor(
np.array(llm_utils.get_eos_token_id(tokenizer, generation_config)).reshape(-1, 1).astype("int64")
)
model_inputs["penalty_score"] = paddle.full(
shape=[batch_size, 1], fill_value=arg_config.repetition_penalty, dtype="float32"
)
model_inputs["frequency_score"] = paddle.full(shape=[batch_size, 1], fill_value=0.0, dtype="float32")
model_inputs["presence_score"] = paddle.full(shape=[batch_size, 1], fill_value=0.0, dtype="float32")
model_inputs["min_length"] = paddle.full(shape=[batch_size, 1], fill_value=arg_config.min_length, dtype="int64")
model_inputs["max_length"] = paddle.full(shape=[batch_size, 1], fill_value=arg_config.max_length, dtype="int64")
position_ids, _ = vl_model.get_rope_index(
config.vision_config["spatial_merge_size"],
config.image_token_id,
config.video_token_id,
config.vision_start_token_id,
vision_model_inputs.get("input_ids"),
vision_model_inputs.get("image_grid_thw"),
vision_model_inputs.get("video_grid_thw", None),
vision_model_inputs.get("attention_mask"),
)
position_start = position_ids[0][0][-1].item()
position_end = config.max_position_embeddings - position_ids.shape[-1] + position_start
position_value = (
paddle.arange(position_start, position_end).reshape([1, 1, -1]).expand([position_ids.shape[0], 1, -1])
)
position_ids = paddle.concat([position_ids, position_value], axis=-1)
head_dim = config.hidden_size // config.num_attention_heads
qwen2_Embedding = Qwen2RotaryEmbedding(head_dim, config.max_position_embeddings, config.rope_theta)
cos = qwen2_Embedding.cos_cached
sin = qwen2_Embedding.sin_cached
# NOTE: (zhoukangkang、changwenbin) Copied from PaddleMIX/paddlemix/models/qwen2_vl/modeling_qwen2_vl.py,
# for calculating M-ROPE.
cos = cos[position_ids]
sin = sin[position_ids]
mrope_section = config.rope_scaling["mrope_section"] * 2
cos = paddle.concat(x=[m[i % 3] for i, m in enumerate(cos.split(mrope_section, axis=-1))], axis=-1)
sin = paddle.concat(x=[m[i % 3] for i, m in enumerate(sin.split(mrope_section, axis=-1))], axis=-1)
rope_emb = paddle.stack([cos, sin], axis=0)
rope_emb = rope_emb.reshape([rope_emb.shape[0], 1, rope_emb.shape[2], 1, rope_emb.shape[-1]])
model_inputs["rope_emb"] = rope_emb
model_inputs["bad_tokens"] = paddle.to_tensor([-1], dtype="int64")
model_inputs["is_block_step"] = paddle.full(shape=[batch_size], fill_value=False, dtype="bool")
cache_kvs_shape = fast_llm_model.get_cache_kvs_shape(fast_llm_model.config, batch_size)
cachekv_dtype = config.dtype if arg_config.cachekv_int8_type is None else "uint8"
model_inputs["cache_kvs"] = [paddle.zeros(shape, dtype=cachekv_dtype) for shape in cache_kvs_shape]
block_nums = arg_config.total_max_length // arg_config.block_size
model_inputs["block_tables"] = paddle.arange(block_nums, dtype="int32").tile([batch_size, 1])
seq_lens = inputs_embeds.shape[1]
model_inputs["seq_lens_this_time"] = paddle.to_tensor(np.array(seq_lens).astype("int32").reshape(-1, 1))
model_inputs["seq_lens_encoder"] = paddle.to_tensor(np.array(seq_lens).astype("int32").reshape(-1, 1))
model_inputs["seq_lens_decoder"] = paddle.full(shape=[batch_size, 1], fill_value=0, dtype="int32")
model_inputs["step_idx"] = paddle.full(shape=[batch_size, 1], fill_value=0, dtype="int64")
model_inputs["not_need_stop"] = paddle.full(shape=[1], fill_value=True, dtype="bool")
model_inputs["stop_flags"] = paddle.full(shape=[batch_size, 1], fill_value=False, dtype="bool")
model_inputs["stop_nums"] = paddle.full(shape=[1], fill_value=batch_size, dtype="int64")
model_inputs["pre_ids"] = paddle.full(shape=[batch_size, arg_config.max_length], fill_value=-1, dtype="int64")
model_inputs["next_tokens"] = paddle.full(shape=[batch_size, 1], fill_value=-1, dtype="int64")
return model_inputs
parser = PdArgumentParser((PredictorArgument, ModelArgument))
predictor_args, model_args = parser.parse_args_into_dataclasses()
paddle.set_default_dtype(predictor_args.dtype)
config = AutoConfig.from_pretrained(predictor_args.model_name_or_path)
# NOTE: (changwenbin) This is for using the inference optimization of paddlenlp qwen2.
config.model_type = "qwen2"
generation_config = GenerationConfig.from_pretrained(predictor_args.model_name_or_path)
fast_llm_model = AutoInferenceModelForCausalLM.from_pretrained(
predictor_args.model_name_or_path,
config=config,
predictor_args=predictor_args,
model_args=model_args,
dtype=predictor_args.dtype,
tensor_parallel_degree=1,
tensor_parallel_rank=0,
)
fast_llm_model.eval()
vl_model.model = fast_llm_model
def run_model():
vision_model_inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pd",
)
with paddle.no_grad():
inputs_embeds = vl_model.vision_forward(**vision_model_inputs)
llm_model_inputs = init_llm_model_inputs(vision_model_inputs, inputs_embeds, arg_config=predictor_args)
generated_text = ""
generated_ids = paddle.to_tensor([], dtype="int64").reshape([1, 0])
while llm_model_inputs["not_need_stop"]:
generated_id = fast_llm_model.generate(**llm_model_inputs) # already trimmed in paddle
llm_model_inputs["input_ids"] = generated_id
llm_model_inputs["inputs_embeds"] = None
generated_ids = paddle.concat([generated_ids, generated_id], axis=1)
if paddle.any(generated_id == 151645).item():
break
generated_text = processor.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
return generated_text
if predictor_args.benchmark:
print(f"Benchmarking {predictor_args.model_name_or_path} ...")
warm_up = 3
repeat_times = 10
sumtime = 0.0
times = repeat_times + warm_up
for i in range(times):
if i > 2:
paddle.device.synchronize()
starttime = datetime.datetime.now()
generated_text = run_model()
if i > 2:
paddle.device.synchronize()
endtime = datetime.datetime.now()
print("Final output_text:\n", generated_text)
if i > 2:
duringtime = endtime - starttime
duringtime = duringtime.seconds * 1000 + duringtime.microseconds / 1000.0
sumtime += duringtime
print(f"Single {predictor_args.model_name_or_path} end to end time : ", duringtime, "ms")
inference_global_mem = paddle.device.cuda.memory_reserved() / (1024**3)
print(f"Inference used CUDA memory : {inference_global_mem:.3f} GiB")
print(f"Single {predictor_args.model_name_or_path} ave end to end time : ", sumtime / repeat_times, "ms")
else:
generated_text = run_model()
print("Final output_text:\n", generated_text)