-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathbuffer_compose_renderer.py
1049 lines (921 loc) · 62.9 KB
/
buffer_compose_renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
@file buffer_compose_renderer.py
@author Jianfei Guo, Shanghai AI Lab
@brief Joint rendering of multiple objects in one scene.
Implements a renderer that:
first apply ray marching or rasterization to each object model,
then composes one holistic volume buffer from each object queried buffers,
followed by overall volume integration.
FEATURES:
- Multi-object buffer collection, sorting and merging, and volume integration.
- For each object, support render buffer of both packed and batched type.
- Built on general (batched_)ray_test and (batched_)ray_query APIs.
Hence, any work in neural rendering that works with these APIs can be supported.
"""
import itertools
import functools
import numpy as np
from typing import Any, Dict, Tuple, Union, List
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_scatter import scatter_min
from nr3d_lib.utils import IDListedDict
from nr3d_lib.profile import profile
from nr3d_lib.config import ConfigDict, parse_device_ids
from nr3d_lib.models.utils import batchify_query
from nr3d_lib.graphics.nerf import packed_alpha_to_vw
from nr3d_lib.graphics.pack_ops import get_pack_infos_from_n, interleave_linstep, packed_div, packed_matmul, packed_sum, packed_sort
from app.models.asset_base import AssetAssignment, AssetModelMixin
from app.resources import AssetBank, Scene, SceneNode, namedtuple_ind_id_obj
from app.renderers.utils import rotate_volume_buffer_nablas, prepare_empty_rendered
from app.resources.observers import Camera, MultiCamBundle, Lidar, RaysLidar, MultiRaysLidarBundle
from app.renderers.render_parallel import render_parallel, render_parallel_with_replicas, EvalParallelWrapper
import matplotlib.pyplot as plt
class BufferComposeRenderer(nn.Module):
"""
Joint rendering of multiple objects in one scene.
Implements a renderer that:
first apply ray marching or rasterization to each object model,
then composes one holistic volume buffer from each object queried buffers,
followed by overall volume integration.
"""
def __init__(self, config: dict):
super().__init__()
self.training = False
common = config.common.copy()
train = config.get('train', ConfigDict()).copy()
train.update(common)
val = config.get('val', ConfigDict()).copy()
val.update(common)
self._config = val
self._config_train = train
self.image_keys = ['depth_volume', 'mask_volume', 'rgb_volume', 'rgb_volume_occupied', 'rgb_volume_non_occupied', 'normals_volume']
self.eval_parallel_wrapper = None
self.train_parallel_devices = None
@property
def config(self):
if self.training:
return self._config_train
else:
return self._config
def make_eval_parallel(self, asset_bank: nn.Module, devices: list):
"""
Prepare render_parallel for evaluation and rendering
"""
devices = parse_device_ids(devices, to_torch=True)
wrapper = EvalParallelWrapper(asset_bank, self, devices)
self.eval_parallel_wrapper = wrapper
def make_train_parallel(self, devices: list):
"""
Prepare render_parallel for training
"""
devices = parse_device_ids(devices, to_torch=True)
self.train_parallel_devices = devices
def populate(self, asset_bank: AssetBank):
if self.config.get("enable_postprocessor", False):
self.image_postprocessor = asset_bank["ImagePostprocessor"]
else:
self.image_postprocessor = None
def forward(self, *args, **kwargs):
return self.ray_query(*args, **kwargs)
@profile
def view_query(
self,
observer: Union[Camera, MultiCamBundle, Lidar, RaysLidar, MultiRaysLidarBundle],
#---- Keyword arguments
drawable_ids: List[str] = None,
scene: Scene = ...,
#---- Keyword arguments (View query configs)
):
pass
@profile
def ray_query(
self,
#---- Tensor inputs
rays_o: torch.Tensor,
rays_d: torch.Tensor,
rays_ts: torch.Tensor = None,
rays_pix: torch.Tensor = None,
*,
#---- Keyword arguments
drawable_ids: List[str] = None,
scene: Scene = ...,
observer: Union[Camera, MultiCamBundle, Lidar, RaysLidar, MultiRaysLidarBundle]=None,
#---- Keyword arguments (Ray query configs)
near=None, far=None, bypass_ray_query_cfg=dict(),
with_rgb: bool=None, with_normal: bool=None, with_feature_dim: int=None, with_env: bool=None,
return_buffer=False, return_details=False,
render_per_obj_individual=False,
render_per_obj_in_scene=False,
render_per_class_in_scene=False,
) -> dict:
assert rays_o.dim() == rays_d.dim() == 2, "rays_o and rays_d should have size of [N, 3]"
total_num_rays = rays_o.shape[0]
device, config = scene.device, self.config
sky_objs = scene.get_drawable_groups_by_class_name('Sky')
if drawable_ids is None:
drawables = observer.filter_drawable_groups(scene.get_drawables())
else:
drawables = scene.drawables[drawable_ids]
if with_rgb is None: with_rgb = config.get('with_rgb', True)
if with_normal is None: with_normal = config.get('with_normal', False)
if with_feature_dim is None: with_feature_dim = config.get('with_feature_dim', 0)
if with_env is None: with_env = config.get('with_env', len(sky_objs) > 0)
if near is None: near = config.get('near', None)
if far is None: far = config.get('far', None)
if with_rgb and scene.image_embeddings is not None:
assert isinstance(observer, (Camera, MultiCamBundle)), f'Expected camera observers, but got observer type={observer}'
assert rays_ts is not None, 'Need per-ray frame index `rays_ts` input when scene.image_embeddings is present.'
rays_h_appear = scene.image_embeddings[observer.id](rays_ts, mode='interp')
else:
rays_h_appear = None
#---- Get rays in renderable objects [num_object, total_num_rays, 3]
rays_o_o, rays_d_o = scene.convert_rays_in_nodes_list(rays_o, rays_d, drawables)
#---- Group objects with their model types
# drawable_model_id_dict = scene.group_drawables_by_model_id(drawables)
#---- NOTE: Equivalent to model_id, as model_id and class_name have one-to-one correspondence.
drawable_class_name_dict = scene.group_drawables_by_class_name(drawables)
if 'Distant' in drawable_class_name_dict.keys():
# Put distant at the last of query queue
drawable_class_name_dict['Distant'] = drawable_class_name_dict.pop('Distant')
class_ind_map = scene.get_drawable_class_ind_map()
instance_ind_map = scene.get_drawable_instance_ind_map()
#----------------------------------------------------
# Prepare outputs
#----------------------------------------------------
total_rendered = prepare_empty_rendered(
[total_num_rays], device=device,
with_rgb=with_rgb, with_normal=with_normal, with_feature_dim=with_feature_dim)
ray_visible_objects = torch.zeros([total_num_rays], dtype=torch.long, device=device)
ray_visible_samples = torch.zeros([total_num_rays], dtype=torch.long, device=device)
if return_buffer:
total_volume_buffer = dict(type='empty')
#---- (Optional) Prepare to store individual per-object renderings
if render_per_obj_individual:
rendered_per_obj = dict()
# NOTE: Render instance segmentation & class segmentation
segmentation_threshold = config.get('segmentation_threshold', 0.6)
ins_seg_mask_buffer = torch.full([total_num_rays], -1, dtype=torch.long, device=device)
class_seg_mask_buffer = torch.full([total_num_rays], -1, dtype=torch.long, device=device)
z_buffer = torch.full([total_num_rays], np.inf, dtype=torch.float, device=device) # Nearest z; used to sort overlapped object's indices according to depth
#---- (Optional) Prepare to store renderings of each object in the context of the scene rendering
if render_per_obj_in_scene:
rendered_per_obj_in_scene: Dict[str, Dict[str, torch.Tensor]] = dict()
#---- (Optional) Prepare to store renderings of each object category (class_name) in the context of the scene rendering
if render_per_class_in_scene:
rendered_per_class_in_scene: Dict[str, Dict[str, torch.Tensor]] = dict()
# Allocate empty data. Will be filled when joint rendering
for class_name, obj_group in scene.drawable_groups_by_class_name.items():
if obj_group[0].model.is_ray_query_supported or class_name in ['Sky']:
rendered_per_class_in_scene[class_name] = prepare_empty_rendered(
[total_num_rays], device=device,
with_rgb=with_rgb, with_normal=with_normal,
with_feature_dim=with_feature_dim)
raw_per_obj_model = dict()
rendered_objs_group_by_class_name: Dict[str, List[str]] = {}
rendered_objs_group_by_model_id: Dict[str, List[str]] = {}
def batched_query_shared(model: AssetModelMixin, group: namedtuple_ind_id_obj):
"""
Query a shared model with `batched_ray_test` and `batched_ray_query`
"""
class_name = group.objs[0].class_name
class_index = class_ind_map[class_name]
query_cfg = ConfigDict(**model.ray_query_cfg, **config)
query_cfg.update(with_rgb=with_rgb, with_normal=with_normal, with_feature_dim=with_feature_dim) # Potential override
for k, v in bypass_ray_query_cfg.get(class_name, {}).items():
query_cfg[k] = v
#-------------------------------
#---- Test intersecting ray with model.space (batched)
batched_ray_input = dict(
rays_o=rays_o_o[group.inds], rays_d=rays_d_o[group.inds], near=near, far=far,
rays_ts=rays_ts.tile(len(group.inds), *[1]*rays_ts.dim()) if rays_ts is not None else None,
rays_pix=rays_pix.tile(len(group.inds), *[1]*rays_pix.dim()) if rays_pix is not None else None,
rays_h_appear=rays_h_appear.tile(len(group.inds), *[1]*rays_h_appear.dim()) if rays_h_appear is not None else None)
batched_ray_tested = model.batched_ray_test(**batched_ray_input, compact_batch=True)
#-------------------------------
#---- Further filter tested rays with validness
# NOTE: Useful when joint-frame-pixel sampling, since some objects might not be valid across all frozen frames.
validness = torch.stack([o.i_valid_flags for o in group.objs], dim=0) # [num_objects, total_num_rays]
if validness.dim() == 2: # [num_objs, num_rays]. Usually when in joint-frame-pixel sampling mode.
validness = validness[batched_ray_tested['rays_full_bidx'], batched_ray_tested['rays_inds']] # [num_tested_rays]
else: # [num_objs]
validness = validness[batched_ray_tested['rays_full_bidx']]
if (~validness).any():
valid_inds = validness.nonzero().long()[..., 0]
batched_ray_tested = {k: v[valid_inds] if k not in ('num_rays', 'full_bidx_map') else v for k, v in batched_ray_tested.items()}
batched_ray_tested.update(num_rays=valid_inds.numel())
#-------------------------------
#---- NOTE: You can put other ray filtering operations here, following the same structure as above.
# e.g. Filtering rays in semantic masks, etc.
# pass
full_bidx_map = batched_ray_tested['full_bidx_map'].tolist()
num_rays, rays_inds = batched_ray_tested['num_rays'], batched_ray_tested['rays_inds']
compact_obj_full_ids = [group.objs[i].full_unique_id for i in full_bidx_map] # Only for querying shared models;
compact_obj_ids = [group.objs[i].id for i in full_bidx_map] # For scene-level render and stats
#-------------------------------
#---- Prepare contional models' conditions
if num_rays > 0:
batched_infos = {
'ins_id': compact_obj_full_ids,
# 'frame_ind': scene.i
}
model.set_condition(batched_infos)
#-------------------------------
#---- Query on tested rays
raw_ret: dict = model.batched_ray_query(
batched_ray_tested=batched_ray_tested, batched_ray_input=batched_ray_input, config=query_cfg,
return_buffer=True, render_per_obj_individual=render_per_obj_individual, return_details=return_details)
#-------------------------------
#---- (Optional) Collect per-object individual rendering
if render_per_obj_individual: # 742 us
rendered = raw_ret.pop('rendered')
for i, (oid, obj) in enumerate(zip(group.ids, group.objs)):
_cur_rendered = rendered_per_obj[oid] = {k: v[i] for k, v in rendered.items()}
# NOTE: Rotate obj's normals to world for joint rendering
if 'normals_volume' in _cur_rendered:
_cur_rendered['normals_volume_in_world'] = obj.world_transform.rotate(_cur_rendered['normals_volume'])
# NOTE: Render class segmentation and instance segmentation
if num_rays > 0:
compact_instance_indexes_map = torch.tensor([instance_ind_map[oid] for oid in compact_obj_ids], dtype=torch.long, device=device)
# object index of each tested ray
instance_indexes = compact_instance_indexes_map[batched_ray_tested['rays_bidx']] # [num_tested]
# [num_tested]
inds = (batched_ray_tested['rays_full_bidx'], rays_inds)
mask_volume = rendered['mask_volume'][inds]
depth_volume = rendered['depth_volume'][inds]
mask_mask = (mask_volume > segmentation_threshold)
mask_mask_inds = mask_mask.nonzero().long()[..., 0]
if mask_mask.any():
rays_inds_masked = rays_inds[mask_mask_inds]
depth_volume_masked = depth_volume[mask_mask_inds]
instance_indexes_masked = instance_indexes[mask_mask_inds]
# To check for overlapping objects on the same pixel
_, inv_idx, cnt = torch.unique(rays_inds_masked, return_counts=True, return_inverse=True)
if (cnt>1).any():
# Sort instances according to depth
depth_max, argmax = scatter_min(depth_volume_masked, inv_idx, dim=0)
rays_inds_masked = rays_inds_masked[argmax]
# depth_volume_masked = depth_volume_masked[argmax] # equals to `depth_max`
depth_volume_masked = depth_max
instance_indexes_masked = instance_indexes_masked[argmax]
z_nearer = depth_volume_masked < z_buffer[rays_inds_masked]
if z_nearer.any():
z_buffer[rays_inds_masked[z_nearer]] = depth_volume_masked[z_nearer]
ins_seg_mask_buffer[rays_inds_masked[z_nearer]] = instance_indexes_masked[z_nearer]
class_seg_mask_buffer[rays_inds_masked[z_nearer]] = class_index
#-------------------------------
#---- (Optional) Prepare per-object renderings in the context of scene rendering
# if render_per_obj_in_scene:
# for i, (oid, obj) in enumerate(zip(group.ids, group.objs)):
# # Allocate empty data. Will be filled when volume rendering
# rendered_per_obj_in_scene[oid] = prepare_empty_rendered(
# [total_num_rays], device=device,
# with_rgb=with_rgb, with_normal=with_normal, with_feature_dim=with_feature_dim)
#-------------------------------
#---- Collect results
raw_ret.update(
class_name=class_name, obj_id=compact_obj_ids, model_id=model.id,
num_rays=num_rays, rays_inds=rays_inds, )
rendered_objs_group_by_class_name.setdefault(class_name, []).extend(compact_obj_ids)
rendered_objs_group_by_model_id.setdefault(model.id, []).extend(compact_obj_ids)
if num_rays > 0:
volume_buffer = raw_ret['volume_buffer']
if (buffer_type:=volume_buffer['type']) != 'empty':
#---- Rotate obj's normals to world for joint rendering
if 'nablas' in volume_buffer:
nablas = volume_buffer['nablas']
compact_obj_rotations = torch.stack([group.objs[i].world_transform.rotation() for i in full_bidx_map], dim=0)
if compact_obj_rotations.dim() == 4: # [num_objs, num_rays, 3, 3]. Usually when in joint-frame-pixel sampling mode.
rotation_of_each_hit_ray = compact_obj_rotations[volume_buffer['rays_bidx_hit'], volume_buffer['rays_inds_hit']]
else: # [num_objs, num_rays, 3, 3]
rotation_of_each_hit_ray = compact_obj_rotations[volume_buffer['rays_bidx_hit']]
if (buffer_type:=volume_buffer['type']) == 'packed':
# nablas: [num_feats, 3]
nablas_in_world = packed_matmul(nablas, rotation_of_each_hit_ray, volume_buffer['pack_infos_hit'])
elif buffer_type == 'batched':
# rotation: [num_rays_hit, 3, 3]
# nablas: [num_rays_hit, num_pts, 3]
nablas_in_world = (rotation_of_each_hit_ray.unsqueeze(1) * nablas.unsqueeze(-2)).sum(-1)
volume_buffer['nablas_in_world'] = nablas_in_world
#---- Mainly for demo; replace buffer rgb with nablas (normals)
if query_cfg.get('normal_as_rgb', False):
volume_buffer['rgb'] = (F.normalize(volume_buffer['nablas'].view(-1,3).clamp_(-1,1), dim=-1)/2.+0.5)
#---- Converts the packed/batched volume_buffer into packed format for joint rendering
rays_inds_hit = volume_buffer['rays_inds_hit']
num_per_hit = torch.full_like(rays_inds_hit, volume_buffer['num_per_hit'], device=device, dtype=torch.long) \
if buffer_type == 'batched' else volume_buffer['pack_infos_hit'][:,1]
"""
NOTE:
There will be two set of ray packing due to potential duplicate `rays_inds_hit` \
i.e. one ray hitting multiple objects / the same `rays_inds_hit` shared by multiple `rays_bidx_hit`
- `rays_inds_hit`, `rays_bidx_hit`, `pack_infos_hit`
This packing is the original packing with potential duplicate `rays_inds_hit`.
- `rays_inds_collect`, `pack_infos_collect`
This packing follows all other types of model querying process, producing unique `rays_inds_collect`.
Multiple consecutive packs sharing the same `rays_inds_hit` will be re-grouped into one single pack.
NOTE:
The below lines check for duplicated ridx caused by the same ray passing through multiple batched objects
[!!!] Requires ridx to be consecutive and monotonically increasing.
Example: this is sufficed by nr3d_lib/models/spatial/batched.py::ray_test()
"""
rays_inds_collect, duplicate_cnt = torch.unique_consecutive(rays_inds_hit, return_counts=True)
if (duplicate_cnt > 1).any():
num_per_hit_collect = torch.zeros([total_num_rays], device=device, dtype=torch.long).index_add_(0, rays_inds_hit, num_per_hit)[rays_inds_collect]
pack_infos_collect = get_pack_infos_from_n(num_per_hit_collect)
else:
num_per_hit_collect = num_per_hit
pack_infos_collect = get_pack_infos_from_n(num_per_hit) \
if buffer_type == 'batched' else volume_buffer['pack_infos_hit']
volume_buffer.update(rays_inds_collect=rays_inds_collect, pack_infos_collect=pack_infos_collect)
ray_visible_objects.index_add_(0, rays_inds_hit, rays_inds_hit.new_ones(rays_inds_hit.shape))
ray_visible_samples.index_add_(0, rays_inds_collect, num_per_hit_collect)
# ray_visible_samples.index_add_(0, rays_inds_hit, num_per_hit) # NOTE: equivalent
#-------------------------------
#---- Put everything into overall buffer
# TODO: (?) For shared models with no single obj id, use class_name as the dict key instead
# This might breaks the rule; consider unify every kinds of model with model_id in the future.
# NOTE: But, model_id is bad for foreach_query_shared
# For now, this is a temporarily good fix for render_parallel \
# (so buffer results from the same shared model can be correctly collected)
raw_per_obj_model[class_name] = raw_ret
def foreach_query_shared(model: AssetModelMixin, group: namedtuple_ind_id_obj):
"""
Query a shared model with foreach
"""
class_name = group.objs[0].class_name
class_index = class_ind_map[class_name]
query_cfg = ConfigDict(**model.ray_query_cfg, **config)
query_cfg.update(with_rgb=with_rgb, with_normal=with_normal, with_feature_dim=with_feature_dim) # Potential override
for k, v in bypass_ray_query_cfg.get(class_name, {}).items():
query_cfg[k] = v
for (ind, obj_id, obj) in zip(*group):
#-------------------------------
#---- Test intersecting ray with model.space
ray_input = dict(
rays_o=rays_o_o[ind], rays_d=rays_d_o[ind], near=near, far=far,
rays_ts=rays_ts, rays_pix=rays_pix, rays_h_appear=rays_h_appear)
ray_tested = model.ray_test(**ray_input)
num_rays, rays_inds = ray_tested['num_rays'], ray_tested['rays_inds']
if num_rays > 0:
batched_infos = {
'ins_id': [obj.full_unique_id],
# 'frame_ind': scene.i
}
model.set_condition(batched_infos)
#-------------------------------
#---- Query on tested rays
raw_ret: dict = model.ray_query(
ray_tested=ray_tested, ray_input=ray_input, config=query_cfg,
return_buffer=True, render_per_obj_individual=render_per_obj_individual, return_details=return_details)
#-------------------------------
#---- (Optional) Per-object seperate rendering
if render_per_obj_individual:
rendered = rendered_per_obj[obj_id] = raw_ret.pop('rendered')
# NOTE: Rotate obj's normals to world for joint rendering
if 'normals_volume' in rendered:
rendered['normals_volume_in_world'] = obj.world_transform.rotate(rendered['normals_volume'])
# Render class segmentation and instance segmentation
if num_rays > 0:
instance_index = instance_ind_map[obj_id]
# [num_tested]
mask_volume = rendered['mask_volume'][rays_inds]
depth_volume = rendered['depth_volume'][rays_inds]
mask_mask = (mask_volume > segmentation_threshold)
mask_mask_inds = mask_mask.nonzero().long()[..., 0]
if mask_mask.any():
rays_inds_masked = rays_inds[mask_mask_inds]
z_nearer = (depth_volume[mask_mask_inds] < z_buffer[rays_inds_masked])
z_nearer_inds = z_nearer.nonzero().long()[..., 0]
if z_nearer.any():
rays_inds_to_update = rays_inds_masked[z_nearer_inds]
z_buffer[rays_inds_to_update] = depth_volume[mask_mask_inds][z_nearer_inds]
ins_seg_mask_buffer[rays_inds_to_update] = instance_index
class_seg_mask_buffer[rays_inds_to_update] = class_index
# if render_per_obj_in_scene:
# # Allocate empty data. Will be filled when volume rendering
# rendered_per_obj_in_scene[obj_id] = prepare_empty_rendered(
# [total_num_rays], device=device,
# with_rgb=with_rgb, with_normal=with_normal, with_feature_dim=with_feature_dim)
#-------------------------------
#---- Collect results
raw_ret.update(
class_name=class_name, obj_id=obj_id, model_id=model.id,
num_rays=num_rays, rays_inds=rays_inds, )
rendered_objs_group_by_class_name.setdefault(class_name, []).append(obj_id)
rendered_objs_group_by_model_id.setdefault(model.id, []).append(obj_id)
if num_rays > 0:
volume_buffer = raw_ret['volume_buffer']
if (buffer_type:=volume_buffer['type']) != 'empty':
#---- Rotate obj's normals to world for joint rendering
if 'nablas' in volume_buffer:
o2w_rot = obj.world_transform.rotation().detach() # Removing gradients on nablas can eliminate interference with the pose gradient.
volume_buffer['nablas_in_world'] = rotate_volume_buffer_nablas(o2w_rot, volume_buffer['nablas'], volume_buffer)
#---- Mainly for demo; replace buffer rgb with nablas (normals)
if query_cfg.get('normal_as_rgb', False):
volume_buffer['rgb'] = (F.normalize(volume_buffer['nablas'].view(-1,3).clamp_(-1,1), dim=-1)/2.+0.5)
#---- Converts the packed/batched volume_buffer into packed format for joint rendering
rays_inds_hit = volume_buffer['rays_inds_hit']
num_per_hit = torch.full_like(rays_inds_hit, volume_buffer['num_per_hit'], device=device, dtype=torch.long) \
if buffer_type == 'batched' else volume_buffer['pack_infos_hit'][:,1]
pack_infos_hit = get_pack_infos_from_n(num_per_hit) \
if buffer_type == 'batched' else volume_buffer['pack_infos_hit']
volume_buffer.update(rays_inds_collect=rays_inds_hit, pack_infos_collect=pack_infos_hit)
ray_visible_objects[rays_inds_hit] += 1
ray_visible_samples[rays_inds_hit] += num_per_hit
#-------------------------------
#---- Put everything into overall buffer
raw_per_obj_model[obj_id] = raw_ret
def query_single(model: AssetModelMixin, group: namedtuple_ind_id_obj):
"""
Query a single model
"""
class_name = group.objs[0].class_name
class_index = class_ind_map[class_name]
query_cfg = ConfigDict(**model.ray_query_cfg, **config)
query_cfg.update(with_rgb=with_rgb, with_normal=with_normal, with_feature_dim=with_feature_dim) # Potential override
for k, v in bypass_ray_query_cfg.get(class_name, {}).items():
query_cfg[k] = v
assert len(group.ids) == 1, "Multiple objects sharing the same single model is not allowed for now."
ind, obj_id, obj = group.inds[0], group.ids[0], group.objs[0]
#-------------------------------
#---- Test intersecting ray with model.space
if class_name != 'Distant':
ray_input = dict(
rays_o=rays_o_o[ind], rays_d=rays_d_o[ind], near=near, far=far,
rays_ts=rays_ts, rays_pix=rays_pix, rays_h_appear=rays_h_appear)
ray_tested = model.ray_test(**ray_input)
else:
#---- NOTE: What's below: special ray preparation for distant model
ray_input = dict(
rays_o=rays_o_o[ind], rays_d=rays_d_o[ind],
near=torch.full([total_num_rays], near, device=device, dtype=torch.float), far=None,
rays_ts=rays_ts, rays_pix=rays_pix, rays_h_appear=rays_h_appear)
if (cr_obj:=model.cr_obj) is not None:
# NOTE: If cr_obj is present, distant-view model should use rays in cr_obj
cr_raw_ret = raw_per_obj_model[cr_obj.id]
cr_ind = drawable_class_name_dict[cr_obj.class_name].inds[0]
ray_input.update(rays_o=rays_o_o[cr_ind], rays_d=rays_d_o[cr_ind])
# NOTE: For rays that pass cr's ray_test, the distant model's sampling starts from cr's `far`
if cr_raw_ret['num_rays'] > 0:
ray_input['near'][cr_raw_ret['rays_inds']] = cr_raw_ret['ray_far']
# NOTE: Detach pose gradient on distant-view branch (if any). This significantly helps pose refinement.
ray_input['rays_o'] = ray_input['rays_o'].detach()
ray_input['rays_d'] = ray_input['rays_d'].detach()
# NOTE: Distant model does not actually need to ray_test
ray_tested = dict(**ray_input, num_rays=total_num_rays, rays_inds=torch.arange(total_num_rays, device=device))
#-------------------------------
#---- NOTE: You can apply ray filtering operations to ray_tested if needed.
# pass
num_rays, rays_inds = ray_tested['num_rays'], ray_tested['rays_inds']
ray_near, ray_far = ray_tested.get('near', None), ray_tested.get('far', None)
#-------------------------------
#---- Query on tested rays
raw_ret: dict = model.ray_query(
ray_tested=ray_tested, ray_input=ray_input, config=query_cfg,
return_buffer=True, render_per_obj_individual=render_per_obj_individual, return_details=return_details)
#-------------------------------
#---- (Optional) Per-object seperate rendering
if render_per_obj_individual:
rendered = rendered_per_obj[obj_id] = raw_ret.pop('rendered')
# NOTE: Rotate obj's normals to world for joint rendering
if 'normals_volume' in rendered:
rendered['normals_volume_in_world'] = obj.world_transform.rotate(rendered['normals_volume'])
# Render class segmentation and instance segmentation
if num_rays > 0:
instance_index = instance_ind_map[obj_id]
# [num_tested]
mask_volume = rendered['mask_volume'][rays_inds]
depth_volume = rendered['depth_volume'][rays_inds]
mask_mask = (mask_volume > segmentation_threshold)
mask_mask_inds = mask_mask.nonzero().long()[..., 0]
if mask_mask.any():
rays_inds_masked = rays_inds[mask_mask_inds]
z_nearer = (depth_volume[mask_mask_inds] < z_buffer[rays_inds_masked])
z_nearer_inds = z_nearer.nonzero().long()[..., 0]
if z_nearer.any():
rays_inds_to_update = rays_inds_masked[z_nearer_inds]
z_buffer[rays_inds_to_update] = depth_volume[mask_mask_inds][z_nearer_inds]
ins_seg_mask_buffer[rays_inds_to_update] = instance_index
class_seg_mask_buffer[rays_inds_to_update] = class_index
# if render_per_obj_in_scene:
# # Allocate empty data. Will be filled when volume rendering
# rendered_per_obj_in_scene[obj_id] = prepare_empty_rendered(
# [total_num_rays], device=device,
# with_rgb=with_rgb, with_normal=with_normal, with_feature_dim=with_feature_dim)
#-------------------------------
#---- Collect results
raw_ret.update(
class_name=class_name, obj_id=obj_id, model_id=model.id,
num_rays=num_rays, rays_inds=rays_inds, ray_near=ray_near, ray_far=ray_far)
rendered_objs_group_by_class_name.setdefault(class_name, []).append(obj_id)
rendered_objs_group_by_model_id.setdefault(model.id, []).append(obj_id)
if num_rays > 0:
volume_buffer = raw_ret['volume_buffer']
if (buffer_type:=volume_buffer['type']) != 'empty':
#---- Rotate obj's normals to world for joint rendering
if 'nablas' in volume_buffer:
o2w_rot = obj.world_transform.rotation().detach() # Removing gradients on nablas can eliminate interference with the pose gradient.
volume_buffer['nablas_in_world'] = rotate_volume_buffer_nablas(o2w_rot, volume_buffer['nablas'], volume_buffer)
#---- Mainly for demo; replace buffer rgb with nablas (normals)
if query_cfg.get('normal_as_rgb', False):
volume_buffer['rgb'] = (F.normalize(volume_buffer['nablas'].view(-1,3).clamp_(-1,1), dim=-1)/2.+0.5)
#---- Converts the packed/batched volume_buffer into packed format for joint rendering
rays_inds_hit = volume_buffer['rays_inds_hit']
num_per_hit = torch.full_like(rays_inds_hit, volume_buffer['num_per_hit'], device=device, dtype=torch.long) \
if buffer_type == 'batched' else volume_buffer['pack_infos_hit'][:,1]
pack_infos_hit = get_pack_infos_from_n(num_per_hit) \
if buffer_type == 'batched' else volume_buffer['pack_infos_hit']
volume_buffer.update(rays_inds_collect=rays_inds_hit, pack_infos_collect=pack_infos_hit)
ray_visible_objects[rays_inds_hit] += 1
ray_visible_samples[rays_inds_hit] += num_per_hit
#-------------------------------
#---- Put everything into overall buffer
raw_per_obj_model[obj_id] = raw_ret
#----------------------------------------------------
# Ray query each model
#----------------------------------------------------
for class_name, group in drawable_class_name_dict.items():
model: AssetModelMixin = group.objs[0].model
# model = scene.asset_bank[model_id]
if not model.is_ray_query_supported:
# Not a ray query-able model
continue
if model.assigned_to in [AssetAssignment.MULTI_OBJ, AssetAssignment.MULTI_OBJ_ONE_SCENE]:
#----------------------------------------------------
#--------- Ray query shared models
if model.is_batched_query_supported:
# If a shared model support `batched_ray_query`
batched_query_shared(model, group)
else:
# If a shared model does not support `batched_ray_query`, will call `ray_query` one by one
foreach_query_shared(model, group)
else:
#----------------------------------------------------
#--------- Ray query single models
query_single(model, group)
if render_per_obj_in_scene:
# Allocate empty data. Will be filled when joint rendering
for i, (oid, obj) in enumerate(zip(group.ids, group.objs)):
rendered_per_obj_in_scene[oid] = prepare_empty_rendered(
[total_num_rays], device=device,
with_rgb=with_rgb, with_normal=with_normal,
with_feature_dim=with_feature_dim)
total_rays_inds_hit = ray_visible_samples.nonzero().long()[..., 0]
if total_rays_inds_hit.numel() > 0:
#----------------------------------------------------
# Collect all returned buffer
#----------------------------------------------------
total_pack_infos_sparse = get_pack_infos_from_n(ray_visible_samples)
total_pack_infos = total_pack_infos_sparse[total_rays_inds_hit]
total_num_samples = total_pack_infos_sparse[-1,:].sum().item()
total_depths = torch.zeros([total_num_samples], dtype=torch.float, device=device)
total_alphas = torch.zeros([total_num_samples], dtype=torch.float, device=device)
if with_rgb:
total_rgbs = torch.zeros([total_num_samples, 3], dtype=torch.float, device=device)
if with_normal:
total_nablas = torch.zeros([total_num_samples, 3], dtype=torch.float, device=device)
if with_feature_dim:
total_feature = torch.zeros([total_num_samples, with_feature_dim], dtype=torch.float, device=device)
current_pack_indices_buffer = total_pack_infos_sparse[:, 0].clone()
for raw_ret in raw_per_obj_model.values():
volume_buffer = raw_ret['volume_buffer']
if (buffer_type:=volume_buffer['type']) != 'empty':
rays_inds_collect = volume_buffer['rays_inds_collect']
pack_infos_collect = volume_buffer['pack_infos_collect']
volume_buffer['pidx_in_total'] = pidx_in_total = interleave_linstep(
current_pack_indices_buffer[rays_inds_collect],
pack_infos_collect[:,1], 1, return_idx=False)
total_depths[pidx_in_total] = volume_buffer['t'].flatten()
total_alphas[pidx_in_total] = volume_buffer['opacity_alpha'].flatten()
if with_rgb:
total_rgbs[pidx_in_total] = volume_buffer['rgb'].flatten(0, -2)
if with_normal and ('nablas_in_world' in volume_buffer): # Additional check on `nablas_in_world` since not all models have nablas
total_nablas[pidx_in_total] = volume_buffer['nablas_in_world'].flatten(0, -2)
if with_feature_dim:
total_feature[pidx_in_total] = volume_buffer['feature'].flatten(0, -2)
current_pack_indices_buffer.index_add_(0, rays_inds_collect, pack_infos_collect[:,1])
#----------------------------------------------------
# Sort all returned buffer
#----------------------------------------------------
total_volume_buffer = dict(type='packed', rays_inds_hit=total_rays_inds_hit, pack_infos_hit=total_pack_infos)
total_volume_buffer['t'], total_sort_indices = packed_sort(total_depths, total_pack_infos)
total_volume_buffer['opacity_alpha'] = total_alphas[total_sort_indices]
if with_rgb:
total_volume_buffer['rgb'] = total_rgbs[total_sort_indices]
if with_normal:
total_volume_buffer['nablas'] = total_nablas[total_sort_indices]
if with_feature_dim:
total_volume_buffer['feature'] = total_feature[total_sort_indices]
#----------------------------------------------------
# Volume integration for the whole scene
#----------------------------------------------------
total_volume_buffer['vw'] = total_vw = packed_alpha_to_vw(total_volume_buffer['opacity_alpha'], total_pack_infos)
total_rendered['mask_volume'][total_rays_inds_hit] = vw_sum = packed_sum(total_vw, total_pack_infos)
total_volume_buffer['vw_normalized'] = total_vw_normalized = packed_div(total_vw, vw_sum+1e-10, total_pack_infos)
if config.get('depth_use_normalized_vw', True):
total_rendered['depth_volume'][total_rays_inds_hit] = packed_sum(total_vw_normalized * total_volume_buffer['t'], total_pack_infos)
else:
total_rendered['depth_volume'][total_rays_inds_hit] = packed_sum(total_vw * total_volume_buffer['t'], total_pack_infos)
if with_rgb:
total_rendered['rgb_volume'][total_rays_inds_hit] = packed_sum(total_vw.view(-1,1) * total_volume_buffer['rgb'].view(-1,3), total_pack_infos)
if with_normal:
if self.training:
total_rendered['normals_volume'][total_rays_inds_hit] = packed_sum(total_vw.view(-1,1) * total_volume_buffer['nablas'].view(-1,3), total_pack_infos)
else:
total_rendered['normals_volume'][total_rays_inds_hit] = packed_sum(total_vw.view(-1,1) * F.normalize(total_volume_buffer['nablas'].view(-1,3).clamp_(-1,1), dim=-1), total_pack_infos)
if with_feature_dim:
total_rendered['feature_volume'][total_rays_inds_hit] = packed_sum(total_vw.view(-1,1) * total_volume_buffer['feature'].view(-1,3), total_pack_infos)
if return_buffer or render_per_class_in_scene or render_per_obj_in_scene:
# NOTE: Lucky us! `indices` across different packs are strictly mono increasing, \
# hence we can directly sort the whole indices tensor, rather than sorting in a per-pack manner
total_sort_ranks = torch.sort(total_sort_indices).indices # The same with torch.argsort
for oid_or_clsname, raw_ret in raw_per_obj_model.items():
volume_buffer = raw_ret['volume_buffer']
if (buffer_type:=volume_buffer['type']) != 'empty':
volume_buffer['vw_in_total'] = total_vw[total_sort_ranks[volume_buffer['pidx_in_total']]]
#----------------------------------------------------
# Compute rendering results of each object/class_name in the context of scene rendering
#----------------------------------------------------
if render_per_class_in_scene:
for oid_or_clsname, raw_ret in raw_per_obj_model.items():
volume_buffer = raw_ret['volume_buffer']
class_name = raw_ret['class_name']
if (buffer_type:=volume_buffer['type']) != 'empty':
vw_in_total = volume_buffer['vw_in_total']
rays_inds_collect = volume_buffer['rays_inds_collect']
pack_infos_collect = volume_buffer['pack_infos_collect']
# Use `index_add` due to potential multiple objects sharing the same class_name
rendered_per_class_in_scene[class_name]['mask_volume'].index_add_(
0, rays_inds_collect, packed_sum(vw_in_total.view(-1), pack_infos_collect))
rendered_per_class_in_scene[class_name]['depth_volume'].index_add_(
0, rays_inds_collect, packed_sum(vw_in_total.view(-1) * volume_buffer['t'].flatten(), pack_infos_collect))
if with_rgb:
rendered_per_class_in_scene[class_name]['rgb_volume'].index_add_(
0, rays_inds_collect, packed_sum(vw_in_total.view(-1,1) * volume_buffer['rgb'].flatten(0, -2), pack_infos_collect))
if with_normal and ('nablas_in_world' in volume_buffer): # Additional check on `nablas_in_world` since not all models have nablas
rendered_per_class_in_scene[class_name]['normals_volume'].index_add_(
0, rays_inds_collect, packed_sum(vw_in_total.view(-1,1) * volume_buffer['nablas_in_world'].flatten(0, -2), pack_infos_collect))
if with_feature_dim:
rendered_per_class_in_scene[class_name]['feature_volume'].index_add_(
0, rays_inds_collect, packed_sum(vw_in_total.view(-1,1) * volume_buffer['feature'].flatten(0, -2)))
if config.get('depth_use_normalized_vw', True):
# Normalize depth if needed, after all vw_sum is collected
for _, v in rendered_per_class_in_scene.items():
v['depth_volume'] = v['depth_volume'] / (v['mask_volume'] + 1e-10)
if render_per_obj_in_scene:
for oid_or_clsname, raw_ret in raw_per_obj_model.items():
volume_buffer = raw_ret['volume_buffer']
class_name = raw_ret['class_name']
obj_id = raw_ret['obj_id']
if (buffer_type:=volume_buffer['type']) != 'empty':
vw_in_total = volume_buffer['vw_in_total']
rays_inds_hit = volume_buffer['rays_inds_hit']
# NOTE: Discuss separately based on whether obj_id represents a single object or multiple objects.
# If `obj_id` is a single str: for query_single() and foreach_query_shared()
# If `obj_id` is a list: for batched_query_shared()
if isinstance(obj_id, list):
num_objs = len(obj_id) # Potentially compacted object ids
rays_bidx_hit = volume_buffer['rays_bidx_hit'] # Potentially compacted batch inds
_cur_rendered = prepare_empty_rendered(
[num_objs, total_num_rays], device=device,
with_rgb=with_rgb, with_normal=with_normal, with_feature_dim=with_feature_dim)
inds = (rays_bidx_hit, rays_inds_hit)
else:
_cur_rendered = rendered_per_obj_in_scene[obj_id]
inds = rays_inds_hit
if buffer_type == 'batched':
num_rays_hit: int = rays_inds_hit.numel()
num_per_hit: int = volume_buffer['num_per_hit']
vw_in_total = vw_in_total.view(-1, num_per_hit)
_cur_rendered['mask_volume'][inds] = vw_in_total.sum(-1)
_cur_rendered['depth_volume'][inds] = (vw_in_total * volume_buffer['t'].view(-1,num_per_hit)).sum(-1)
if with_rgb:
_cur_rendered['rgb_volume'][inds] = (vw_in_total.unsqueeze(-1) * volume_buffer['t'].view(num_rays_hit,num_per_hit)).sum(-2)
if with_normal and ('nablas_in_world' in volume_buffer): # Additional check on `nablas_in_world` since not all models have nablas
_cur_rendered['normals_volume'][inds] = (vw_in_total.unsqueeze(-1) * volume_buffer['nablas_in_world'].view(num_rays_hit,num_per_hit)).sum(-2)
if with_feature_dim:
_cur_rendered['feature_volume'][inds] = (vw_in_total.unsqueeze(-1) * volume_buffer['feature'].view(num_rays_hit,num_per_hit)).sum(-2)
else:
pack_infos_hit = volume_buffer['pack_infos_hit']
_cur_rendered['mask_volume'][inds] = packed_sum(vw_in_total.view(-1), pack_infos_hit)
_cur_rendered['depth_volume'][inds] = packed_sum(vw_in_total.view(-1) * volume_buffer['t'].flatten(), pack_infos_hit)
if with_rgb:
_cur_rendered['rgb_volume'][inds] = packed_sum(vw_in_total.view(-1,1) * volume_buffer['rgb'].flatten(0, -2), pack_infos_hit)
if with_normal and ('nablas_in_world' in volume_buffer): # Additional check on `nablas_in_world` since not all models have nablas
_cur_rendered['normals_volume'][inds] = packed_sum(vw_in_total.view(-1,1) * volume_buffer['nablas_in_world'].flatten(0, -2), pack_infos_hit)
if with_feature_dim:
_cur_rendered['feature_volume'][inds] = packed_sum(vw_in_total.view(-1,1) * volume_buffer['feature'].flatten(0, -2))
if config.get('depth_use_normalized_vw', True):
_cur_rendered['depth_volume'] = _cur_rendered['depth_volume'] / (_cur_rendered['mask_volume'] + 1e-10)
if isinstance(obj_id, list):
for k, v in _cur_rendered.items():
for i, oid in enumerate(obj_id):
rendered_per_obj_in_scene[oid][k] = v[i]
#----------------------------------------------------
# Sky model
#----------------------------------------------------
if with_rgb:
total_rendered["rgb_volume_occupied"] = total_rendered["rgb_volume"]
if with_env and len(sky_objs) > 0:
sky_obj = sky_objs[0]
sky_model = sky_obj.model
env_rgb = sky_model(v=F.normalize(rays_d, dim=-1), h_appear=rays_h_appear)
total_rendered['rgb_sky'] = env_rgb
total_rendered['rgb_volume_non_occupied'] = env_rgb_blend = (1-total_rendered['mask_volume'].unsqueeze(-1)) * env_rgb
# NOTE: Avoid inplace op
total_rendered['rgb_volume'] = total_rendered['rgb_volume'] + env_rgb_blend
if render_per_class_in_scene:
rendered_per_class_in_scene[sky_obj.class_name]['rgb_volume'] = env_rgb_blend
rendered_per_class_in_scene[sky_obj.class_name]['mask_volume'] = 1 - total_rendered['mask_volume']
#----------------------------------------------------
# Image Post-processing
#----------------------------------------------------
if with_rgb and self.image_postprocessor:
assert rays_pix is not None, "Need `rays_pix` input when image_postprocessor is present."
total_rendered["rgb_volume"] = self.image_postprocessor(rays_h_appear, rays_pix, total_rendered["rgb_volume"])
#----------------------------------------------------
# Return
#----------------------------------------------------
ret = dict(
ray_intersections=dict(
obj_cnt=ray_visible_objects,
samples_cnt=ray_visible_samples
),
rendered=total_rendered,
# num_rays_hit=0 if total_volume_buffer['type'] == 'empty' else total_volume_buffer['rays_inds_hit'].numel(),
rendered_objs_group_by_class_name=rendered_objs_group_by_class_name,
rendered_objs_group_by_model_id=rendered_objs_group_by_model_id,
rendered_class_names=list(rendered_objs_group_by_class_name.keys()),
rendered_model_ids=list(rendered_objs_group_by_model_id.keys()),
rendered_obj_ids=itertools.chain.from_iterable([[v] if isinstance(v, str) else v for v in rendered_objs_group_by_class_name.values()]),
)
if render_per_obj_individual:
ret.update(
rendered_per_obj=rendered_per_obj,
class_seg_mask_buffer=class_seg_mask_buffer,
ins_seg_mask_buffer=ins_seg_mask_buffer
)
if render_per_obj_in_scene:
ret['rendered_per_obj_in_scene'] = rendered_per_obj_in_scene
if render_per_class_in_scene:
ret['rendered_per_class_in_scene'] = rendered_per_class_in_scene
if return_buffer:
ret['volume_buffer'] = total_volume_buffer
if return_details:
ret['raw_per_obj_model'] = raw_per_obj_model
return ret
def render(
self,
scene: Scene, *,
#---- Inputs
rays: List[torch.Tensor] = None, # [rays_o, rays_d] or [rays_o, rays_d, rays_ts, rays_pix]
observer: Union[Camera, MultiCamBundle, Lidar, RaysLidar, MultiRaysLidarBundle] = None,
drawable_ids: List[str]=None,
#---- Other keyword arguments
show_progress: bool=False, rayschunk: int=None,
near: float = None, far: float = None, bypass_ray_query_cfg=dict(),
with_rgb: bool=None, with_normal: bool=None, with_feature_dim: int=None, with_env: bool=None,
return_buffer=False, return_details=False,
render_per_obj_individual=False,
render_per_obj_in_scene=False,
render_per_class_in_scene=False,
) -> dict:
assert rays is not None or observer is not None, \
'At least one of "rays" and "observer" should be specified'
if drawable_ids is None:
drawables = scene.get_drawables()
else:
drawables = [scene.drawables[did] for did in drawable_ids]
if observer is not None:
obs_id = observer.id
assert (obs_id in scene.observers.keys() if not isinstance(obs_id, (list, Tuple)) \
else all([oid in scene.observers.keys() for oid in obs_id])), \
"Expect observer to belong to scene"
scene.asset_bank.rendering_before_per_view(renderer=self, observer=observer, scene_id=scene.id)
near = near or observer.near
far = far or observer.far
# Filter drawables using observers' view frustum
drawables = observer.filter_drawable_groups(drawables)
if rayschunk is None:
rayschunk = self.config.get("rayschunk", 0)
with torch.set_grad_enabled(self.training):
if rays is None:
prefix_shape = None
if isinstance(observer, (Camera, MultiCamBundle)):
rays_o, rays_d, rays_ts, rays_pix = observer.get_all_rays(return_ts=True, return_xy=True)
else:
rays_o, rays_d, rays_ts = observer.get_all_rays(return_ts=True) # NOTE: Already flatten
rays_pix = None # NOTE: `rays_pix` is only for camera pixel locations
rays = [rays_o, rays_d, rays_ts, rays_pix] if rays_pix is not None else [rays_o, rays_d, rays_ts]
else:
# Flatten rays
prefix_shape = rays[0].shape[:-1]
rays = [ri.flatten(0, len(prefix_shape)-1) for ri in rays]
kwargs = dict(
drawable_ids=[d.id for d in drawables],
near=near, far=far, bypass_ray_query_cfg=bypass_ray_query_cfg,
with_rgb=with_rgb, with_normal=with_normal, with_feature_dim=with_feature_dim, with_env=with_env,
return_buffer=return_buffer, return_details=return_details,
render_per_obj_individual=render_per_obj_individual,
render_per_obj_in_scene=render_per_obj_in_scene,
render_per_class_in_scene=render_per_class_in_scene
)
if self.training or (not rayschunk) or (rays[0].shape[0] <= rayschunk):
if self.train_parallel_devices is None:
ret = self(*rays, scene=scene, observer=observer, **kwargs)
else:
ret = render_parallel(
*rays, renderer=self, scene=scene, observer=observer, **kwargs,
devices=self.train_parallel_devices, output_device=scene.device, detach=not self.training)
else:
assert (not return_buffer) and (not return_details), "batchify_query does not work when return_buffer is True or return_details is True"
if self.eval_parallel_wrapper is None:
render_rayschunk = functools.partial(self.__call__, scene=scene, observer=observer, **kwargs)
else:
scene_replicas, observer_replicas = self.eval_parallel_wrapper.replicate_scene_observer(scene, observer, detach=True)
render_rayschunk = functools.partial(
render_parallel_with_replicas,
renderer_replicas=self.eval_parallel_wrapper.renderer_replicas,
scene_replicas=scene_replicas, observer_replicas=observer_replicas,
devices=self.eval_parallel_wrapper.devices, output_device=scene.device, **kwargs)
ret = batchify_query(render_rayschunk, *rays, chunk=rayschunk, show_progress=show_progress)
#---- Collect results
ret.update(rays_o=rays[0], rays_d=rays[1])
if prefix_shape is not None and len(prefix_shape)>1:
for k in self.image_keys:
if k in ret['rendered']:
v = ret['rendered'][k]
ret['rendered'][k] = v.unflatten(0, prefix_shape)
# Restore shape if any
for oid, odict in ret.get('rendered_per_obj_in_scene', {}).items():
if k in odict:
odict[k] = odict[k].unflatten(0, prefix_shape)
# Restore shape if any
for oid, odict in ret.get('rendered_per_obj', {}).items():
if k in odict:
odict[k] = odict[k].unflatten(0, prefix_shape)
return ret
if __name__ == "__main__":
def test_multi_buffer_collect_and_merge(device=torch.device('cuda')):
from icecream import ic
# NOTE: The duplicated ray inds should be viewed as the same pack when merging.
volume_buffer_1 = dict(
type="batched",
rays_inds_hit=torch.tensor([1,1,2,6,8], device=device), # Duplicated rays_inds 1,1 (the same ray hitting different batch-obj)
rays_bidx_hit=torch.tensor([0,1,0,0,0], device=device),
num_per_hit=3,
t=torch.tensor([[0.1,0.2,0.3], [1.1,1.2,1.3], [0.1,0.2,0.3], [0.1,0.2,0.3], [0.1,0.2,0.3]], device=device, dtype=torch.float)
)
volume_buffer_2 = dict(
type="packed",
rays_inds_hit=torch.tensor([1,1,2,6,8], device=device), # Duplicated rays_inds 1,1 (the same ray hitting different batch-obj)
rays_bidx_hit=torch.tensor([0,1,0,0,0], device=device),
pack_infos_hit=get_pack_infos_from_n(torch.tensor([2,3,2,2,1], device=device)),
t=torch.tensor([ 0.15,0.25, 0.11,0.12,0.21, 0.4,0.5, 0.05,0.15, 0.14 ], device=device, dtype=torch.float)
)
volume_buffer_3 = dict(
type="packed",
rays_inds_hit=torch.tensor([0,1,2,6,8], device=device),
pack_infos_hit=get_pack_infos_from_n(torch.tensor([1,2,3,2,4], device=device)),
t=torch.tensor([ 0.05, 0.31,0.34, 0.24,0.26,0.28, 0.6,0.7, 0.5,0.6,0.7,0.71], device=device, dtype=torch.float)
)
volume_buffers = [volume_buffer_1, volume_buffer_2, volume_buffer_3]