forked from NVlabs/stylegan2-ada-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdiscriminator_synthesis.py
976 lines (827 loc) · 48.6 KB
/
discriminator_synthesis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
import torch
import torch.nn as nn
from torch.autograd import Variable
from torchvision import transforms
import PIL
from PIL import Image
try:
import ffmpeg
except ImportError:
raise ImportError('ffmpeg-python not found! Install it via "pip install ffmpeg-python"')
try:
import skvideo.io
except ImportError:
raise ImportError('scikit-video not found! Install it via "pip install scikit-video"')
import scipy.ndimage as nd
import numpy as np
import os
import click
from typing import Union, Tuple, Optional, List
from collections import OrderedDict
from tqdm import tqdm
from torch_utils.gen_utils import parse_fps, make_run_dir, save_config, w_to_img, create_image_grid, compress_video, \
parse_new_center, get_w_from_seed
import dnnlib
import legacy
from projector import VGG16FeaturesNVIDIA
os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = 'hide'
import moviepy.editor
# ----------------------------------------------------------------------------
@click.group()
def main():
pass
# ----------------------------------------------------------------------------
def get_available_layers(max_resolution: int) -> List[str]:
"""Helper function to get the available layers given a max resolution (first block in the Discriminator)"""
max_res_log2 = int(np.log2(max_resolution))
block_resolutions = [2**i for i in range(max_res_log2, 2, -1)]
available_layers = ['from_rgb']
for block_res in block_resolutions:
# We don't add the skip layer, as it's the same as conv1 (due to in-place addition; could be changed)
available_layers.extend([f'b{block_res}_conv0', f'b{block_res}_conv1'])
# We also skip 'b4_mbstd', as it doesn't add any new information compared to b8_conv1
available_layers.extend(['b4_conv', 'fc', 'out'])
return available_layers
def parse_layers(s: str) -> List[str]:
"""Helper function for parsing a string of comma-separated layers and returning a list of the individual layers"""
str_list = s.split(',')
# Get all the possible layers up to resolution 1024
all_available_layers = get_available_layers(max_resolution=1024)
for layer in str_list:
message = f'{layer} is not a possible layer! Available layers: {all_available_layers}'
# We also let the user choose all the layers
assert layer in all_available_layers or layer == 'all', message
return str_list
# ----------------------------------------------------------------------------
# TODO: move all feature extractor to its own file (this one and VGG16; eventually the CLIP one as well)
class DiscriminatorFeatures(torch.nn.Module):
def __init__(self, D):
super(DiscriminatorFeatures, self).__init__()
# assert D.init_kwargs.architecture == 'resnet' # removed as some resnet models don't have this attribute
self.block_resolutions = D.block_resolutions
# For loop to get all the inner features of the trained Discriminator with a resnet architecture
for res in self.block_resolutions:
if res == D.img_resolution:
setattr(self, 'from_rgb', eval(f'D.b{res}.fromrgb'))
setattr(self, f'b{res}_skip', eval(f'D.b{res}.skip'))
setattr(self, f'b{res}_conv0', eval(f'D.b{res}.conv0'))
setattr(self, f'b{res}_conv1', eval(f'D.b{res}.conv1'))
# Unique, last block with a fc/out, so we can extract features in a regular fashion
self.b4_mbstd = D.b4.mbstd
self.b4_conv = D.b4.conv
self.adavgpool = nn.AdaptiveAvgPool2d(4) # Necessary if images are of different resolution than D.img_resolution
self.fc = D.b4.fc
self.out = D.b4.out
def get_block_resolutions(self):
"""Get the block resolutions available for the current Discriminator"""
return self.block_resolutions
def get_layers_features(self,
x: torch.Tensor, # Input image
layers: List[str] = None,
normed: bool = False,
sqrt_normed: bool = False) -> List[torch.Tensor]:
"""
Get the feature of a specific layer of the Discriminator (with resnet architecture). The following shows the
shapes of an image, x, as it flows through the different blocks that compose the Discriminator.
*** Legend: => conv2d, -> flatten, ->> fc layer, ~> mbstd layer, +> adaptive average pool ***
# First block / DiscriminatorBlock
from_rgb = self.from_rgb(x) # [1, 3, 1024, 1024] => [1, 32, 1024, 1024]
b1024_skip = self.b1024_skip(from_rgb, gain=np.sqrt(0.5)) # [1, 32, 1024, 1024] => [1, 64, 512, 512]
b1024_conv0 = self.b1024_conv0(from_rgb) # [1, 32, 1024, 1024] => [1, 32, 1024, 1024]
b1024_conv1 = self.b1024_conv1(b1024_conv0, gain=np.sqrt(0.5)) # [1, 32, 1024, 1024] => [1, 64, 512, 512]
b1024_conv1 = b1024_skip.add_(b1024_conv1) # [1, 64, 512, 512]
# Second block / DiscriminatorBlock
b512_skip = self.b512_skip(b1024_conv1, gain=np.sqrt(0.5)) # [1, 64, 512, 512] => [1, 128, 256, 256]
b512_conv0 = self.b512_conv0(b1024_conv1) # [1, 64, 512, 512] => [1, 64, 512, 512]
b512_conv1 = self.b512_conv1(b512_conv0, gain=np.sqrt(0.5)) # [1, 64, 512, 512] => [1, 128, 256, 256]
b512_conv1 = b512_skip.add_(b512_conv1) # [1, 128, 256, 256]
# Third block / DiscriminatorBlock
b256_skip = self.b256_skip(b512_conv1, gain=np.sqrt(0.5)) # [1, 128, 256, 256] => [1, 256, 128, 128]
b256_conv0 = self.b256_conv0(b512_conv1) # [1, 128, 256, 256] => [1, 128, 256, 256]
b256_conv1 = self.b256_conv1(b256_conv0, gain=np.sqrt(0.5)) # [1, 128, 256, 256] => [1, 256, 128, 128]
b256_conv1 = b256_skip.add_(b256_conv1) # [1, 256, 128, 128]
# Fourth block / DiscriminatorBlock
b128_skip = self.b128_skip(b256_conv1, gain=np.sqrt(0.5)) # [1, 256, 128, 128] => [1, 512, 64 ,64]
b128_conv0 = self.b128_conv0(b256_conv1) # [1, 256, 128, 128] => [1, 256, 128, 128]
b128_conv1 = self.b128_conv1(b128_conv0, gain=np.sqrt(0.5)) # [1, 256, 128, 128] => [1, 512, 64, 64]
b128_conv1 = b128_skip.add_(b128_conv1) # [1, 512, 64, 64]
# Fifth block / DiscriminatorBlock
b64_skip = self.b64_skip(b128_conv1, gain=np.sqrt(0.5)) # [1, 512, 64, 64] => [1, 512, 32, 32]
b64_conv0 = self.b64_conv0(b128_conv1) # [1, 512, 64, 64] => [1, 512, 64, 64]
b64_conv1 = self.b64_conv1(b64_conv0, gain=np.sqrt(0.5)) # [1, 512, 64, 64] => [1, 512, 32, 32]
b64_conv1 = b64_skip.add_(b64_conv1) # [1, 512, 32, 32]
# Sixth block / DiscriminatorBlock
b32_skip = self.b32_skip(b64_conv1, gain=np.sqrt(0.5)) # [1, 512, 32, 32] => [1, 512, 16, 16]
b32_conv0 = self.b32_conv0(b64_conv1) # [1, 512, 32, 32] => [1, 512, 32, 32]
b32_conv1 = self.b32_conv1(b32_conv0, gain=np.sqrt(0.5)) # [1, 512, 32, 32] => [1, 512, 16, 16]
b32_conv1 = b32_skip.add_(b32_conv1) # [1, 512, 16, 16]
# Seventh block / DiscriminatorBlock
b16_skip = self.b16_skip(b32_conv1, gain=np.sqrt(0.5)) # [1, 512, 16, 16] => [1, 512, 8, 8]
b16_conv0 = self.b16_conv0(b32_conv1) # [1, 512, 16, 16] => [1, 512, 16, 16]
b16_conv1 = self.b16_conv1(b16_conv0, gain=np.sqrt(0.5)) # [1, 512, 16, 16] => [1, 512, 8, 8]
b16_conv1 = b16_skip.add_(b16_conv1) # [1, 512, 8, 8]
# Eighth block / DiscriminatorBlock
b8_skip = self.b8_skip(b16_conv1, gain=np.sqrt(0.5)) # [1, 512, 8, 8] => [1, 512, 4, 4]
b8_conv0 = self.b8_conv0(b16_conv1) # [1, 512, 8, 8] => [1, 512, 8, 8]
b8_conv1 = self.b8_conv1(b8_conv0, gain=np.sqrt(0.5)) # [1, 512, 8, 8] => [1, 512, 4, 4]
b8_conv1 = b8_skip.add_(b8_conv1) # [1, 512, 4, 4]
# Ninth block / DiscriminatorEpilogue
b4_mbstd = self.b4_mbstd(b8_conv1) # [1, 512, 4, 4] ~> [1, 513, 4, 4]
b4_conv = self.adavgpool(self.b4_conv(b4_mbstd)) # [1, 513, 4, 4] => [1, 512, 4, 4] +> [1, 512, 4, 4]
fc = self.fc(b4_conv.flatten(1)) # [1, 512, 4, 4] -> [1, 8192] ->> [1, 512]
out = self.out(fc) # [1, 512] ->> [1, 1]
"""
assert not (normed and sqrt_normed), 'Choose one of the normalizations!'
# Return the full output if no layers are indicated
if layers is None:
layers = ['out']
features_dict = OrderedDict() # Can just be a dictionary, but I plan to use the order of the features later on
features_dict['from_rgb'] = self.from_rgb(x) # [1, 3, D.img_resolution, D.img_resolution] =>
# => [1, 32, D.img_resolution, D.img_resolution]
for idx, res in enumerate(self.block_resolutions):
# conv0 and skip from the first block use from_rgb
if idx == 0:
features_dict[f'b{res}_skip'] = getattr(self, f'b{res}_skip')(
features_dict['from_rgb'], gain=np.sqrt(0.5))
features_dict[f'b{res}_conv0'] = getattr(self, f'b{res}_conv0')(features_dict['from_rgb'])
# The rest use the previous block's conv1
else:
features_dict[f'b{res}_skip'] = getattr(self, f'b{res}_skip')(
features_dict[f'b{self.block_resolutions[idx - 1]}_conv1'], gain=np.sqrt(0.5)
)
features_dict[f'b{res}_conv0'] = getattr(self, f'b{res}_conv0')(
features_dict[f'b{self.block_resolutions[idx - 1]}_conv1']
)
# Finally, pass the current block's conv0 and do the skip connection addition
features_dict[f'b{res}_conv1'] = getattr(self, f'b{res}_conv1')(features_dict[f'b{res}_conv0'],
gain=np.sqrt(0.5))
features_dict[f'b{res}_conv1'] = features_dict[f'b{res}_skip'].add_(features_dict[f'b{res}_conv1'])
# Irrespective of the image size/model size, the last block will be the same:
features_dict['b4_mbstd'] = self.b4_mbstd(features_dict['b8_conv1']) # [1, 512, 4, 4] ~> [1, 513, 4, 4]
features_dict['b4_conv'] = self.b4_conv(features_dict['b4_mbstd']) # [1, 513, 4, 4] => [1, 512, 4, 4]
features_dict['b4_conv'] = self.adavgpool(features_dict['b4_conv']) # [1, 512, 4, 4] +> [1, 512, 4, 4] (Needed if x's resolution is not D.img_resolution)
features_dict['fc'] = self.fc(features_dict['b4_conv'].flatten(1)) # [1, 512, 4, 4] -> [1, 8192] ->> [1, 512]
features_dict['out'] = self.out(features_dict['fc']) # [1, 512] ->> [1, 1]
result_list = list()
for layer in layers:
# Two options to normalize, otherwise we only add the unmodified output; recommended if using more than one layer
if normed:
result_list.append(features_dict[layer] / torch.numel(features_dict[layer]))
elif sqrt_normed:
result_list.append(features_dict[layer] / torch.tensor(torch.numel(features_dict[layer]),
dtype=torch.float).sqrt())
else:
result_list.append(features_dict[layer])
return result_list
# ----------------------------------------------------------------------------
# DeepDream code; modified from Erik Linder-Norén's repository: https://github.com/eriklindernoren/PyTorch-Deep-Dream
def get_image(seed: int = 0,
starting_image: Union[str, os.PathLike] = None,
image_size: int = 1024) -> Tuple[PIL.Image.Image, str]:
"""Set the random seed (NumPy + PyTorch), as well as get an image from a path or generate a random one with the seed"""
torch.manual_seed(seed)
rnd = np.random.RandomState(seed)
# Load image or generate a random one if none is provided
if starting_image is not None:
image = Image.open(starting_image).convert('RGB').resize((image_size, image_size), Image.LANCZOS)
else:
starting_image = f'random_image-seed_{seed}.jpg'
image = Image.fromarray(rnd.randint(0, 255, (image_size, image_size, 3), dtype='uint8'))
return image, starting_image
def crop_resize_rotate(img: PIL.Image.Image,
crop_size: int = None,
new_size: int = None,
rotation_deg: float = None,
translate_x: float = 0.0,
translate_y: float = 0.0) -> PIL.Image.Image:
"""Center-crop the input image into a square of sides crop_size; can be resized to new_size; rotated rotation_deg counter-clockwise"""
# Center-crop the input image
if crop_size is not None:
w, h = img.size # Input image width and height
img = img.crop(box=((w - crop_size) // 2, # Left pixel coordinate
(h - crop_size) // 2, # Upper pixel coordinate
(w + crop_size) // 2, # Right pixel coordinate
(h + crop_size) // 2)) # Lower pixel coordinate
# Resize
if new_size is not None:
img = img.resize(size=(new_size, new_size), # Requested size of the image in pixels; (width, height)
resample=Image.LANCZOS) # Resampling filter
# Rotation and translation
if rotation_deg is not None:
img = img.rotate(angle=rotation_deg, # Angle to rotate image, counter-clockwise
resample=PIL.Image.BICUBIC, # Resampling filter; options: [PIL.Image.NEAREST | PIL.Image.BILINEAR | PIL.Image.BICUBIC]
expand=False, # If True, the whole rotated image will be shown
translate=(translate_x, translate_y), # Translate the image, from top-left corner (post-rotation)
fillcolor=(0, 0, 0)) # Black background
# TODO: tile the background
return img
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
preprocess = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
def deprocess(image_np: torch.Tensor) -> np.ndarray:
image_np = image_np.squeeze().transpose(1, 2, 0)
image_np = image_np * std.reshape((1, 1, 3)) + mean.reshape((1, 1, 3))
# image_np = (image_np + 1.0) / 2.0
image_np = np.clip(image_np, 0.0, 1.0)
image_np = (255 * image_np).astype('uint8')
return image_np
def clip(image_tensor: torch.Tensor) -> torch.Tensor:
"""Clamp per channel"""
for c in range(3):
m, s = mean[c], std[c]
image_tensor[0, c] = torch.clamp(image_tensor[0, c], -m / s, (1 - m) / s)
return image_tensor
def dream(image: PIL.Image.Image,
model: torch.nn.Module,
layers: List[str],
normed: bool = False,
sqrt_normed: bool = False,
iterations: int = 20,
lr: float = 1e-2) -> np.ndarray:
""" Updates the image to maximize outputs for n iterations """
Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
image = Variable(Tensor(image), requires_grad=True)
for i in range(iterations):
model.zero_grad()
out = model.get_layers_features(image, layers=layers, normed=normed, sqrt_normed=sqrt_normed)
loss = sum(layer.norm() for layer in out) # More than one layer may be used
loss.backward()
avg_grad = np.abs(image.grad.data.cpu().numpy()).mean()
norm_lr = lr / avg_grad
image.data += norm_lr * image.grad.data
image.data = clip(image.data)
# image.data = torch.clamp(image.data, -1.0, 1.0)
image.grad.data.zero_()
return image.cpu().data.numpy()
def deep_dream(image: PIL.Image.Image,
model: torch.nn.Module,
model_resolution: int,
layers: List[str],
normed: bool,
sqrt_normed: bool,
iterations: int,
lr: float,
octave_scale: float,
num_octaves: int,
unzoom_octave: bool = False,
disable_inner_tqdm: bool = False) -> np.ndarray:
""" Main deep dream method """
# Center-crop and resize
image = crop_resize_rotate(img=image, crop_size=min(image.size), new_size=model_resolution)
# Preprocess image
image = preprocess(image)
# image = torch.from_numpy(np.array(image)).permute(-1, 0, 1) / 127.5 - 1.0 # alternative
image = image.unsqueeze(0).cpu().data.numpy()
# Extract image representations for each octave
octaves = [image]
for _ in range(num_octaves - 1):
# Alternatively, see if we get better results with: https://www.tensorflow.org/tutorials/generative/deepdream#taking_it_up_an_octave
octave = nd.zoom(octaves[-1], (1, 1, 1 / octave_scale, 1 / octave_scale), order=1)
# Necessary for StyleGAN's Discriminator, as it cannot handle any image size
if unzoom_octave:
octave = nd.zoom(octave, np.array(octaves[-1].shape) / np.array(octave.shape), order=1)
octaves.append(octave)
detail = np.zeros_like(octaves[-1])
for octave, octave_base in enumerate(tqdm(octaves[::-1], desc=f'Dreaming w/layers {"|".join(x for x in layers)}',
disable=disable_inner_tqdm)):
if octave > 0:
# Upsample detail to new octave dimension
detail = nd.zoom(detail, np.array(octave_base.shape) / np.array(detail.shape), order=1)
# Add deep dream detail from previous octave to new base
input_image = octave_base + detail
# Get new deep dream image
dreamed_image = dream(input_image, model, layers, normed, sqrt_normed, iterations, lr)
# Extract deep dream details
detail = dreamed_image - octave_base
return deprocess(dreamed_image)
# ----------------------------------------------------------------------------
@main.command(name='style-transfer')
def style_transfer_discriminator():
print('Coming soon!')
# Reference: https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
# ----------------------------------------------------------------------------
@main.command(name='dream')
@click.pass_context
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
# Synthesis options
@click.option('--seed', type=int, help='Random seed to use', default=0)
@click.option('--starting-image', type=str, help='Path to image to start from', default=None)
@click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)', default=None)
@click.option('--lr', 'learning_rate', type=float, help='Learning rate', default=1e-2, show_default=True)
@click.option('--iterations', '-it', type=int, help='Number of gradient ascent steps per octave', default=20, show_default=True)
# Layer options
@click.option('--layers', type=parse_layers, help='Layers of the Discriminator to use as the features. If "all", will generate a dream image per available layer in the loaded model', default=['b16_conv1'], show_default=True)
@click.option('--normed', 'norm_model_layers', is_flag=True, help='Add flag to divide the features of each layer of D by its number of elements')
@click.option('--sqrt-normed', 'sqrt_norm_model_layers', is_flag=True, help='Add flag to divide the features of each layer of D by the square root of its number of elements')
# Octaves options
@click.option('--num-octaves', type=int, help='Number of octaves', default=5, show_default=True)
@click.option('--octave-scale', type=float, help='Image scale between octaves', default=1.4, show_default=True)
@click.option('--unzoom-octave', type=bool, help='Set to True for the octaves to be unzoomed (this will be slower)', default=True, show_default=True)
# Extra parameters for saving the results
@click.option('--outdir', type=click.Path(file_okay=False), help='Directory path to save the results', default=os.path.join(os.getcwd(), 'out', 'discriminator_synthesis'), show_default=True, metavar='DIR')
@click.option('--description', '-desc', type=str, help='Additional description name for the directory path to save results', default='', show_default=True)
def discriminator_dream(
ctx: click.Context,
network_pkl: Union[str, os.PathLike],
seed: int,
starting_image: Union[str, os.PathLike],
class_idx: Optional[int], # TODO: conditional model
learning_rate: float,
iterations: int,
layers: List[str],
norm_model_layers: bool,
sqrt_norm_model_layers: bool,
num_octaves: int,
octave_scale: float,
unzoom_octave: bool,
outdir: Union[str, os.PathLike],
description: str,
):
print(f'Loading networks from "{network_pkl}"...')
# Define the model
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
with dnnlib.util.open_url(network_pkl) as f:
D = legacy.load_network_pkl(f)['D'].eval().requires_grad_(False).to(device) # type: ignore
# Get the model resolution (image resizing and getting available layers)
model_resolution = D.img_resolution
# We will use the features of the Discriminator, on the layer specified by the user
model = DiscriminatorFeatures(D).requires_grad_(False).to(device)
if 'all' in layers:
# Get all the available layers in a list
available_layers = get_available_layers(max_resolution=model.get_block_resolutions()[0])
# Get the image and image name
image, starting_image = get_image(seed=seed, starting_image=starting_image, image_size=model_resolution)
# Make the run dir in the specified output directory
desc = 'discriminator-dream-all_layers'
desc = f'{desc}-{description}' if len(description) != 0 else desc
run_dir = make_run_dir(outdir, desc)
# Save starting image
image.save(os.path.join(run_dir, f'{os.path.basename(starting_image).split(".")[0]}.jpg'))
# Save the configuration used
ctx.obj = {
'network_pkl': network_pkl,
'synthesis_options': {
'seed': seed,
'starting_image': starting_image,
'class_idx': class_idx,
'learning_rate': learning_rate,
'iterations': iterations
},
'layer_options': {
'layer': available_layers,
'norm_model_layers': norm_model_layers,
'sqrt_norm_model_layers': sqrt_norm_model_layers
},
'octaves_options': {
'num_octaves': num_octaves,
'octave_scale': octave_scale,
'unzoom_octave': unzoom_octave
},
'extra_parameters': {
'outdir': run_dir,
'description': description
}
}
# Save the run configuration
save_config(ctx=ctx, run_dir=run_dir)
# For each layer:
for av_layer in available_layers:
# Extract deep dream image
dreamed_image = deep_dream(image, model, model_resolution, layers=[av_layer], normed=norm_model_layers,
sqrt_normed=sqrt_norm_model_layers, iterations=iterations, lr=learning_rate,
octave_scale=octave_scale, num_octaves=num_octaves, unzoom_octave=unzoom_octave)
# Save the resulting dreamed image
filename = f'layer-{av_layer}_dreamed_{os.path.basename(starting_image).split(".")[0]}.jpg'
Image.fromarray(dreamed_image, 'RGB').save(os.path.join(run_dir, filename))
else:
# Get the image and image name
image, starting_image = get_image(seed=seed, starting_image=starting_image, image_size=model_resolution)
# Extract deep dream image
dreamed_image = deep_dream(image, model, model_resolution, layers=layers, normed=norm_model_layers,
sqrt_normed=sqrt_norm_model_layers, iterations=iterations, lr=learning_rate,
octave_scale=octave_scale, num_octaves=num_octaves, unzoom_octave=unzoom_octave)
# Make the run dir in the specified output directory
desc = f'discriminator-dream-layers_{"-".join(x for x in layers)}'
desc = f'{desc}-{description}' if len(description) != 0 else desc
run_dir = make_run_dir(outdir, desc)
# Save the configuration used
ctx.obj = {
'network_pkl': network_pkl,
'seed': seed,
'starting_image': starting_image,
'class_idx': class_idx,
'learning_rate': learning_rate,
'iterations': iterations,
'layer': layers,
'norm_model_layers': norm_model_layers,
'sqrt_norm_model_layers': sqrt_norm_model_layers,
'octave_scale': octave_scale,
'num_octaves': num_octaves,
'unzoom_octave': unzoom_octave,
'outdir': run_dir,
'description': description
}
# Save the run configuration
save_config(ctx=ctx, run_dir=run_dir)
# Save the resulting image and initial image
filename = f'dreamed_{os.path.basename(starting_image)}'
Image.fromarray(dreamed_image, 'RGB').save(os.path.join(run_dir, filename))
image.save(os.path.join(run_dir, os.path.basename(starting_image)))
# ----------------------------------------------------------------------------
@main.command(name='dream-zoom')
@click.pass_context
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
# Synthesis options
@click.option('--seed', type=int, help='Random seed to use', default=0, show_default=True)
@click.option('--starting-image', type=str, help='Path to image to start from', default=None)
@click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)', default=None)
@click.option('--lr', 'learning_rate', type=float, help='Learning rate', default=5e-3, show_default=True)
@click.option('--iterations', '-it', type=click.IntRange(min=1), help='Number of gradient ascent steps per octave', default=10, show_default=True)
# Layer options
@click.option('--layers', type=parse_layers, help='Layers of the Discriminator to use as the features. If None, will default to the output of D.', default=['b16_conv1'], show_default=True)
@click.option('--normed', 'norm_model_layers', is_flag=True, help='Add flag to divide the features of each layer of D by its number of elements')
@click.option('--sqrt-normed', 'sqrt_norm_model_layers', is_flag=True, help='Add flag to divide the features of each layer of D by the square root of its number of elements')
# Octaves options
@click.option('--num-octaves', type=click.IntRange(min=1), help='Number of octaves', default=5, show_default=True)
@click.option('--octave-scale', type=float, help='Image scale between octaves', default=1.4, show_default=True)
@click.option('--unzoom-octave', type=bool, help='Set to True for the octaves to be unzoomed (this will be slower)', default=False, show_default=True)
# Individual frame manipulation options
@click.option('--pixel-zoom', type=int, help='How many pixels to zoom per step (positive for zoom in, negative for zoom out, padded with black)', default=2, show_default=True)
@click.option('--rotation-deg', '-rot', type=float, help='Rotate image counter-clockwise per frame (padded with black)', default=0.0, show_default=True)
@click.option('--translate-x', '-tx', type=float, help='Translate the image in the horizontal axis per frame (from left to right, padded with black)', default=0.0, show_default=True)
@click.option('--translate-y', '-ty', type=float, help='Translate the image in the vertical axis per frame (from top to bottom, padded with black)', default=0.0, show_default=True)
# Video options
@click.option('--fps', type=parse_fps, help='FPS for the mp4 video of optimization progress (if saved)', default=25, show_default=True)
@click.option('--duration-sec', type=float, help='Duration length of the video', default=15.0, show_default=True)
@click.option('--reverse-video', is_flag=True, help='Add flag to reverse the generated video')
# Extra parameters for saving the results
@click.option('--outdir', type=click.Path(file_okay=False), help='Directory path to save the results', default=os.path.join(os.getcwd(), 'out', 'discriminator_synthesis'), show_default=True, metavar='DIR')
@click.option('--description', '-desc', type=str, help='Additional description name for the directory path to save results', default='', show_default=True)
def discriminator_dream_zoom(
ctx: click.Context,
network_pkl: Union[str, os.PathLike],
seed: int,
starting_image: Union[str, os.PathLike],
class_idx: Optional[int], # TODO: conditional model
learning_rate: float,
iterations: int,
layers: List[str],
norm_model_layers: bool,
sqrt_norm_model_layers: bool,
num_octaves: int,
octave_scale: float,
unzoom_octave: bool,
pixel_zoom: int,
rotation_deg: float,
translate_x: int,
translate_y: int,
fps: int,
duration_sec: float,
reverse_video: bool,
outdir: Union[str, os.PathLike],
description: str,
):
print(f'Loading networks from "{network_pkl}"...')
# Define the model
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
with dnnlib.util.open_url(network_pkl) as f:
D = legacy.load_network_pkl(f)['D'].eval().requires_grad_(False).to(device) # type: ignore
# Get the model resolution (for resizing the starting image if needed)
model_resolution = D.img_resolution
zoom_size = model_resolution - 2 * pixel_zoom
# We will use the features of the Discriminator, on the layer specified by the user
model = DiscriminatorFeatures(D).requires_grad_(False).to(device)
# Get the image and image name
image, starting_image = get_image(seed=seed, starting_image=starting_image, image_size=model_resolution)
# Make the run dir in the specified output directory
desc = 'discriminator-dream-zoom'
desc = f'{desc}-{description}' if len(description) != 0 else desc
run_dir = make_run_dir(outdir, desc)
# Save the configuration used
ctx.obj = {
'network_pkl': network_pkl,
'synthesis_options': {
'seed': seed,
'starting_image': starting_image,
'class_idx': class_idx,
'learning_rate': learning_rate,
'iterations': iterations
},
'layer_options': {
'layers': layers,
'norm_model_layers': norm_model_layers,
'sqrt_norm_model_layers': sqrt_norm_model_layers
},
'octaves_options': {
'num_octaves': num_octaves,
'octave_scale': octave_scale,
'unzoom_octave': unzoom_octave
},
'frame_manipulation_options': {
'pixel_zoom': pixel_zoom,
'rotation_deg': rotation_deg,
'translate_x': translate_x,
'translate_y': translate_y,
},
'video_options': {
'fps': fps,
'duration_sec': duration_sec,
'reverse_video': reverse_video,
},
'extra_parameters': {
'outdir': run_dir,
'description': description
}
}
# Save the run configuration
save_config(ctx=ctx, run_dir=run_dir)
num_frames = int(np.rint(duration_sec * fps)) # Number of frames for the video
n_digits = int(np.log10(num_frames)) + 1 # Number of digits for naming each frame
# Save the starting image
image.save(os.path.join(run_dir, f'dreamed_{0:0{n_digits}d}.jpg'))
for idx, frame in enumerate(tqdm(range(num_frames), desc='Dreaming...', unit='frame')):
# Zoom in after the first frame
if idx > 0:
image = crop_resize_rotate(image, crop_size=zoom_size, new_size=model_resolution,
rotation_deg=rotation_deg, translate_x=translate_x, translate_y=translate_y)
# Extract deep dream image
dreamed_image = deep_dream(image, model, model_resolution, layers=layers, normed=norm_model_layers,
sqrt_normed=sqrt_norm_model_layers, iterations=iterations,
lr=learning_rate, octave_scale=octave_scale, num_octaves=num_octaves,
unzoom_octave=unzoom_octave, disable_inner_tqdm=True)
# Save the resulting image and initial image
filename = f'dreamed_{idx + 1:0{n_digits}d}.jpg'
Image.fromarray(dreamed_image, 'RGB').save(os.path.join(run_dir, filename))
# Now, the dreamed image is the starting image
image = Image.fromarray(dreamed_image, 'RGB')
# Save the final video
print('Saving video...')
stream = ffmpeg.input(os.path.join(run_dir, 'dreamed_*.jpg'), pattern_type='glob', framerate=fps)
stream = ffmpeg.output(stream, os.path.join(run_dir, 'dream-zoom.mp4'), crf=20, pix_fmt='yuv420p')
ffmpeg.run(stream, capture_stdout=True, capture_stderr=True) # I dislike ffmpeg's console logs, so I turn them off
if reverse_video:
# Save the reversed video apart from the original one, so the user can compare both
stream = ffmpeg.input(os.path.join(run_dir, 'dream-zoom.mp4'))
stream = stream.video.filter('reverse')
stream = ffmpeg.output(stream, os.path.join(run_dir, 'dream-zoom_reversed.mp4'), crf=20, pix_fmt='yuv420p')
ffmpeg.run(stream, capture_stdout=True, capture_stderr=True) # ibidem
# ----------------------------------------------------------------------------
def normalize_image(image: Union[PIL.Image.Image, np.ndarray]) -> np.ndarray:
"""Change dynamic range of an image from [0, 255] to [-1, 1]"""
image = np.array(image, dtype=np.float32)
image = image / 127.5 - 1.0
return image
def get_video_information(mp4_filename: Union[str, os.PathLike],
max_length_seconds: float = None,
starting_second: float = 0.0) -> Tuple[int, float, int, int, int, int]:
"""Take a mp4 file and return a list containing each frame as a NumPy array"""
metadata = skvideo.io.ffprobe(mp4_filename)
# Get video properties
fps = int(np.rint(eval(metadata['video']['@avg_frame_rate'])))
total_video_num_frames = int(metadata['video']['@nb_frames'])
video_duration = float(metadata['video']['@duration'])
video_width = int(metadata['video']['@width'])
video_height = int(metadata['video']['@height'])
# Maximum number of frames to return (if not provided, return the full video)
if max_length_seconds is None:
print('Considering the full video...')
max_length_seconds = video_duration
if starting_second != 0.0:
print('Using part of the video...')
starting_second = min(starting_second, video_duration)
max_length_seconds = min(video_duration - starting_second, max_length_seconds)
max_num_frames = int(np.rint(max_length_seconds * fps))
max_frames = min(total_video_num_frames, max_num_frames)
returned_duration = min(video_duration, max_length_seconds)
# Frame to start from
starting_frame = int(np.rint(starting_second * fps))
return fps, returned_duration, starting_frame, max_frames, video_width, video_height
def get_video_frames(mp4_filename: Union[str, os.PathLike],
run_dir: Union[str, os.PathLike],
starting_frame: int,
max_frames: int,
center_crop: bool = False,
save_selected_frames: bool = False) -> np.ndarray:
"""Get all the frames of a video as a np.ndarray"""
# DEPRECATED
print('Getting video frames...')
frames = skvideo.io.vread(mp4_filename) # TODO: crazy things with scikit-video
frames = frames[starting_frame:min(starting_frame + max_frames, len(frames)), :, :, :]
frames = np.transpose(frames, (0, 3, 2, 1)) # NHWC => NCWH
if center_crop:
frame_width, frame_height = frames.shape[2], frames.shape[3]
min_side = min(frame_width, frame_height)
frames = frames[:, :, (frame_width - min_side) // 2:(frame_width + min_side) // 2, (frame_height - min_side) // 2:(frame_height + min_side) // 2]
if save_selected_frames:
skvideo.io.vwrite(os.path.join(run_dir, 'selected_frames.mp4'), np.transpose(frames, (0, 3, 2, 1)))
return frames
# Here for now, might move to its own file if encoding with the Discriminator results fruitless
@main.command(name='visual-reactive')
@click.pass_context
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
# Encoder options
@click.option('--encoder', type=click.Choice(['discriminator', 'vgg16', 'clip']), help='Choose the model to encode each frame into the latent space Z.', default='discriminator', show_default=True)
@click.option('--vgg16-layer', type=click.Choice(['conv4_1', 'conv4_2', 'conv4_3', 'conv5_1', 'conv5_2', 'conv5_3', 'adavgpool', 'fc1', 'fc2']), help='Choose the layer to use from VGG16 (if used as encoder)', default='adavgpool', show_default=True)
# Source video options
@click.option('--source-video', '-video', 'video_file', type=click.Path(exists=True, dir_okay=False), help='Path to video file', required=True)
@click.option('--max-video-length', type=click.FloatRange(min=0.0, min_open=True), help='How many seconds of the video to take (from the starting second)', default=None, show_default=True)
@click.option('--starting-second', type=click.FloatRange(min=0.0), help='Second to start the video from', default=0.0, show_default=True)
@click.option('--frame-transform', type=click.Choice(['none', 'center-crop', 'resize']), help='Transform to apply to the individual frame.')
@click.option('--center-crop', is_flag=True, help='Center-crop each frame of the video')
@click.option('--save-selected-frames', is_flag=True, help='Save the selected frames of the input video after the selected transform')
# Synthesis options
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
@click.option('--new-center', type=parse_new_center, help='New center for the W latent space; a seed (int) or a path to a dlatent (.npy/.npz)', default=None)
@click.option('--noise-mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True)
# Video options
@click.option('--compress', is_flag=True, help='Add flag to compress the final mp4 file with ffmpeg-python (same resolution, lower file size)')
# Extra parameters for saving the results
@click.option('--outdir', type=click.Path(file_okay=False), help='Directory path to save the results', default=os.path.join(os.getcwd(), 'out'), show_default=True, metavar='DIR')
@click.option('--description', '-desc', type=str, help='Description name for the directory path to save results', default='', show_default=True)
def visual_reactive_interpolation(
ctx: click.Context,
network_pkl: Union[str, os.PathLike],
encoder: str,
vgg16_layer: str,
video_file: Union[str, os.PathLike],
max_video_length: float,
starting_second: float,
frame_transform: str,
center_crop: bool,
save_selected_frames: bool,
truncation_psi: float,
new_center: Tuple[str, Union[int, np.ndarray]],
noise_mode: str,
outdir: Union[str, os.PathLike],
description: str,
compress: bool,
smoothing_sec: float = 0.1 # For Gaussian blur; the lower, the faster the reaction; higher leads to more generated frames being the same
):
print(f'Loading networks from "{network_pkl}"...')
# Define the model (load both D, G, and the features of D)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
if encoder == 'discriminator':
print('Loading Discriminator and its features...')
with dnnlib.util.open_url(network_pkl) as f:
D = legacy.load_network_pkl(f)['D'].eval().requires_grad_(False).to(device) # type: ignore
D_features = DiscriminatorFeatures(D).requires_grad_(False).to(device)
del D
elif encoder == 'vgg16':
print('Loading VGG16 and its features...')
url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt'
with dnnlib.util.open_url(url) as f:
vgg16 = torch.jit.load(f).eval().to(device)
vgg16_features = VGG16FeaturesNVIDIA(vgg16).requires_grad_(False).to(device)
del vgg16
elif encoder == 'clip':
print('Loading CLIP model...')
try:
import clip
except ImportError:
raise ImportError('clip not installed! Install it via "pip install git+https://github.com/openai/CLIP.git"')
model, preprocess = clip.load('ViT-B/32', device=device)
model = model.requires_grad_(False) # Otherwise OOM
print('Loading Generator...')
with dnnlib.util.open_url(network_pkl) as f:
G = legacy.load_network_pkl(f)['G_ema'].eval().requires_grad_(False).to(device) # type: ignore
if new_center is None:
# Stick to the tracked center of W during training
w_avg = G.mapping.w_avg
else:
new_center, new_center_value = new_center
# We get the new center using the int (a seed) or recovered dlatent (an np.ndarray)
if isinstance(new_center_value, int):
new_center = f'seed_{new_center}'
w_avg = get_w_from_seed(G, device, new_center_value, truncation_psi=1.0) # We want the pure dlatent
elif isinstance(new_center_value, np.ndarray):
w_avg = torch.from_numpy(new_center_value).to(device)
else:
ctx.fail('Error: New center has strange format! Only an int (seed) or a file (.npy/.npz) are accepted!')
# Create the run dir with the given name description; add slowdown if different than the default (1)
description = 'visual-reactive' if len(description) == 0 else description
run_dir = make_run_dir(outdir, description)
# Name of the video
video_name, _ = os.path.splitext(video_file)
video_name = video_name.split(os.sep)[-1] # Get the actual name of the video
mp4_name = f'visual-reactive_{video_name}'
# Get all the frames of the video and its properties
# TODO: resize the frames to the size of the network (G.img_resolution)
fps, max_video_length, starting_frame, max_frames, width, height = get_video_information(video_file,
max_video_length,
starting_second)
videogen = skvideo.io.vreader(video_file)
fake_dlatents = list()
if save_selected_frames:
# skvideo.io.vwrite sets FPS=25, so we have to manually enter it via FFmpeg
# TODO: use only ffmpeg-python
writer = skvideo.io.FFmpegWriter(os.path.join(run_dir, f'selected-frames_{video_name}.mp4'),
inputdict={'-r': str(fps)})
for idx, frame in enumerate(tqdm(videogen, desc=f'Getting frames+latents of "{video_name}"', unit='frames')):
# Only save the frames that the user has selected
if idx < starting_frame:
continue
if idx > starting_frame + max_frames:
break
if center_crop:
frame_width, frame_height = frame.shape[1], frame.shape[0]
min_side = min(frame_width, frame_height)
frame = frame[(frame_height - min_side) // 2:(frame_height + min_side) // 2, (frame_width - min_side) // 2:(frame_width + min_side) // 2, :]
if save_selected_frames:
writer.writeFrame(frame)
# Get fake latents
if encoder == 'discriminator':
frame = normalize_image(frame) # [0, 255] => [-1, 1]
frame = torch.from_numpy(np.transpose(frame, (2, 1, 0))).unsqueeze(0).to(device) # HWC => CWH => NCWH, N=1
fake_z = D_features.get_layers_features(frame, layers=['fc'])[0]
elif encoder == 'vgg16':
preprocess = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
frame = preprocess(frame).unsqueeze(0).to(device)
fake_z = vgg16_features.get_layers_features(frame, layers=[vgg16_layer])[0]
fake_z = fake_z.view(1, 512, -1).mean(2)
elif encoder == 'clip':
frame = Image.fromarray(frame) # [0, 255]
frame = preprocess(frame).unsqueeze(0).to(device)
fake_z = model.encode_image(frame)
# Normalize the latent so that it's ~N(0, 1)
# fake_z = fake_z / fake_z.max()
fake_z = (fake_z - fake_z.mean()) / fake_z.std()
# Get dlatent
fake_w = G.mapping(fake_z, None)
# Truncation trick
fake_w = w_avg + (fake_w - w_avg) * truncation_psi
fake_dlatents.append(fake_w)
if save_selected_frames:
# Close the video writer
writer.close()
# Set the fake_dlatents as a torch tensor; we can't just do torch.tensor(fake_dlatents) as with NumPy :(
fake_dlatents = torch.cat(fake_dlatents, 0)
# Smooth out so larger changes in the scene are the ones that affect the generation
fake_dlatents = torch.from_numpy(nd.gaussian_filter(fake_dlatents.cpu(),
sigma=[smoothing_sec * fps, 0, 0])).to(device)
# Auxiliary function for moviepy
def make_frame(t):
# Get the frame, dlatent, and respective image
frame_idx = int(np.clip(np.round(t * fps), 0, len(fake_dlatents) - 1))
fake_w = fake_dlatents[frame_idx]
image = w_to_img(G, fake_w, noise_mode)
# Create grid for this timestamp
grid = create_image_grid(image, (1, 1))
# Grayscale => RGB
if grid.shape[2] == 1:
grid = grid.repeat(3, 2)
return grid
# Generate video using the respective make_frame function
videoclip = moviepy.editor.VideoClip(make_frame, duration=max_video_length)
videoclip.set_duration(max_video_length)
# Change the video parameters (codec, bitrate) if you so desire
final_video = os.path.join(run_dir, f'{mp4_name}.mp4')
videoclip.write_videofile(final_video, fps=fps, codec='libx264', bitrate='16M')
# Compress the video (lower file size, same resolution, if successful)
if compress:
compress_video(original_video=final_video, original_video_name=mp4_name, outdir=run_dir, ctx=ctx)
# TODO: merge the videos side by side
# Save the configuration used
new_center = 'w_avg' if new_center is None else new_center
ctx.obj = {
'network_pkl': network_pkl,
'encoder_options': {
'encoder': encoder,
'vgg16_layer': vgg16_layer,
},
'source_video_options': {
'source_video': video_file,
'sorce_video_params': {
'fps': fps,
'height': height,
'width': width,
'length': max_video_length,
'starting_frame': starting_frame,
'total_frames': max_frames
},
'max_video_length': max_video_length,
'starting_second': starting_second,
'frame_transform': frame_transform,
'center_crop': center_crop,
'save_selected_frames': save_selected_frames
},
'synthesis_options': {
'truncation_psi': truncation_psi,
'new_center': new_center,
'noise_mode': noise_mode,
'smoothing_sec': smoothing_sec
},
'video_options': {
'compress': compress
},
'extra_parameters': {
'outdir': run_dir,
'description': description
}
}
save_config(ctx=ctx, run_dir=run_dir)
# ----------------------------------------------------------------------------
if __name__ == '__main__':
main()
# ----------------------------------------------------------------------------