-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference_dualdn.py
283 lines (240 loc) · 11.7 KB
/
inference_dualdn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# -----------------------------------------------------------------------------------
# [ECCV2024] DualDn: Dual-domain Denoising via Differentiable ISP
# [Homepage] https://openimaginglab.github.io/DualDn/
# [Author] Originally Written by Ruikang Li, from MMLab, CUHK.
# [License] Absolutely open-source and free to use, please cite our paper if possible. :)
# -----------------------------------------------------------------------------------
import os
import yaml
import torch
import random
import logging
import argparse
import numpy as np
from copy import deepcopy
from os import path as osp
from collections import OrderedDict
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
from models import build_model
from data import build_dataset, build_dataloader
from utils import get_root_logger, get_time_str, make_exp_dirs, dict2str, get_dist_info, init_dist
def set_random_seed(seed):
"""Set random seeds."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def _postprocess_yml_value(value):
# None
if value == '~' or value.lower() == 'none':
return None
# bool
if value.lower() == 'true':
return True
elif value.lower() == 'false':
return False
# !!float number
if value.startswith('!!float'):
return float(value.replace('!!float', ''))
# number
if value.isdigit():
return int(value)
elif value.replace('.', '', 1).isdigit() and value.count('.') < 2:
return float(value)
# list
if value.startswith('['):
return eval(value)
# str
return value
def ordered_yaml():
"""Support OrderedDict for yaml.
Returns:
tuple: yaml Loader and Dumper.
"""
try:
from yaml import CDumper as Dumper
from yaml import CLoader as Loader
except ImportError:
from yaml import Dumper, Loader
_mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG
def dict_representer(dumper, data):
return dumper.represent_dict(data.items())
def dict_constructor(loader, node):
return OrderedDict(loader.construct_pairs(node))
Dumper.add_representer(OrderedDict, dict_representer)
Loader.add_constructor(_mapping_tag, dict_constructor)
return Loader, Dumper
def yaml_load(args):
"""Load yaml file or string.
Args:
f (str): Option file path or a python string.
Returns:
(dict): Options.
"""
if osp.isfile(args.opt):
with open(args.opt, mode='r') as f:
loaded_opt = yaml.load(f, Loader=ordered_yaml()[0])
else:
loaded_opt = yaml.load(args.opt, Loader=ordered_yaml()[0])
loaded_opt['is_train'] = not args.test
loaded_opt['opt_path'] = args.opt
loaded_opt['path']['pretrain_network'] = args.pretrained_model
loaded_opt['datasets']['val']['val_datasets']['Synthetic']['mode'] = True if args.val_datasets == 'Synthetic' else False
loaded_opt['datasets']['val']['val_datasets']['Real_captured']['mode'] = True if args.val_datasets == 'Real_captured' else False
loaded_opt['datasets']['val']['val_datasets']['DND']['mode'] = True if args.val_datasets == 'DND' else False
loaded_opt['datasets']['val']['syn_noise']['noise_model'] = args.noise_model
loaded_opt['datasets']['val']['syn_noise']['noise_level'] = args.noise_level
loaded_opt['datasets']['val']['syn_isp']['alpha'] = args.alpha
loaded_opt['datasets']['val']['syn_isp']['final_stage'] = args.final_stage
loaded_opt['datasets']['val']['syn_isp']['demosaic_type'] = args.demosaic_type
loaded_opt['datasets']['val']['syn_isp']['gamma_type'] = args.gamma_type
loaded_opt['datasets']['val']['central_crop'] = args.central_crop
return loaded_opt
def opt_update(opt):
"""Update option file or string for individent user.
Args:
opt(dict): Loaded Options dict.
Returns:
(dict): Updated Options dict.
"""
if opt['num_gpu'] == 'auto':
opt['num_gpu'] = torch.cuda.device_count()
# datasets
for phase, dataset in opt['datasets'].items():
dataset['phase'] = phase
if dataset.get('data_path') is not None:
dataset['data_path'] = osp.expanduser(dataset['data_path'])
# paths
for key, val in opt['path'].items():
if (val is not None) and ('resume_state' in key or 'pretrain_network' in key):
opt['path'][key] = osp.expanduser(val)
# add root path
opt['root_path'] = osp.abspath(osp.join(__file__, osp.pardir))
results_root = osp.join(opt['root_path'], 'results', opt['name'])
opt['path']['log'] = results_root
opt['path']['results_root'] = results_root
opt['path']['visualization'] = results_root
opt['path']['param_key'] = 'param_key'
return opt
def parse_options():
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, default=r'./options/DualDn_Big.yml', help='Path to option YAML file.')
parser.add_argument('--pretrained_model', type=str, default=r'./pretrained_model/DualDn_Big.pth', help='Path to pretrained model.')
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher')
parser.add_argument('--test', default=True, help='Test/Train mode')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--val_datasets', choices=['Synthetic', 'Real_captured', 'DND'], default='Synthetic', help='val_datasets for inferencing')
# options only for inferencing [Synthetic] datasets, the following options are useless when inferencing on [Real_captured] and [DND] datasets
parser.add_argument('--noise_model', choices=['gaussian', 'poisson', 'gaussian_poisson', 'heteroscedastic_gaussian'], default='gaussian_poisson', help='noise_model for synthetic noise')
parser.add_argument('--noise_level', type=lambda s: list(map(float, s.split(','))), default=[0.002,0.02], help='[noise_level1, noise_level2, ...] ONLY for synthetic noise')
parser.add_argument('--alpha', type=lambda a: list(map(float, a.split(','))), default=[0.5], help='[alpha1, alpha2, ...] ONLY for synthetic images')
parser.add_argument('--central_crop', default=False, help='set to [True] to inference on central patches in image for fast validation')
parser.add_argument('--final_stage', choices=['white_balance', 'demosaic', 'rgb_to_srgb', 'gamma', 'tone_mapping'], default='tone_mapping', help='final_stage for ISP processing')
parser.add_argument('--demosaic_type', choices=['nearest', 'bilinear', 'Malvar', 'AHD'], default='AHD', help='demosaic_type for ISP processing')
parser.add_argument('--gamma_type', choices=['Rec709', '2.2'], default='Rec709', help='gamma_type for ISP processing') ##! PLEASE set this to 2.2 when inference on DND benchmark, because they use 1/2.2 for gamma correction
parser.add_argument('--force_yml', nargs='+', default=None, help='Force to update yml files. Examples: network:backbone_type=MIRNet_v2')
args = parser.parse_args()
##* load and update yaml option file
opt = yaml_load(args)
opt = opt_update(opt)
##* distributed-training settings
if args.launcher == 'none':
opt['dist'] = False
print('Disable distributed.', flush=True)
else:
opt['dist'] = True
if args.launcher == 'slurm' and 'dist_params' in opt:
init_dist(args.launcher, **opt['dist_params'])
else:
init_dist(args.launcher)
print('init dist .. ', args.launcher)
opt['rank'], opt['world_size'] = get_dist_info()
##* random seed
if opt['manual_seed'] is None:
seed = random.randint(1, 10000)
opt['manual_seed'] = seed
seed = opt.get('manual_seed')
for _, dataset in opt['datasets'].items():
dataset['seed'] = seed
set_random_seed(seed + opt['rank'])
##* force to update yml options
if args.force_yml is not None:
for entry in args.force_yml:
# now do not support creating new keys
keys, value = entry.split('=')
keys, value = keys.strip(), value.strip()
value = _postprocess_yml_value(value)
eval_str = 'opt'
for key in keys.split(':'):
eval_str += f'["{key}"]'
eval_str += '=value'
# using exec function
exec(eval_str)
return opt
def main():
# parse options, set distributed setting, set ramdom seed
opt = parse_options()
torch.backends.cudnn.benchmark = True
# mkdir and initialize loggers
make_exp_dirs(opt)
log_file = osp.join(opt['path']['log'],
f"test_{opt['name']}_{get_time_str()}.log")
logger = get_root_logger(
logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
logger.info(dict2str(opt))
# create test dataset and dataloader
test_loaders = []
for phase, dataset_opt in sorted(opt['datasets'].items()):
if phase == 'val':
for dataset_type, dataset in dataset_opt['val_datasets'].items():
if dataset['mode']:
dataset_opt['dataset_type'] = dataset_type
dataset_opt['data_path'] = dataset['data_path']
if dataset_type == 'Synthetic':
noise_levels, alphas = [], []
if type(dataset_opt['syn_noise']['noise_level']) == list:
noise_levels = deepcopy(dataset_opt['syn_noise']['noise_level'])
else:
noise_levels[0] = deepcopy(dataset_opt['syn_noise']['noise_level'])
if type(dataset_opt['syn_isp']['alpha']) == list:
alphas = deepcopy(dataset_opt['syn_isp']['alpha'])
else:
alphas[0] = deepcopy(dataset_opt['syn_isp']['alpha'])
for _, noise_level in enumerate(noise_levels):
for _, alpha in enumerate(alphas):
dataset_opt['syn_noise']['noise_level'] = deepcopy(noise_level)
dataset_opt['syn_isp']['alpha'] = deepcopy(alpha)
val_set = build_dataset(dataset_opt)
test_loader = build_dataloader(
val_set,
dataset_opt,
num_gpu=opt['num_gpu'],
dist=opt['dist'],
sampler=None,
seed=opt['manual_seed'])
logger.info(
f'Number of val images in {dataset_type} {dataset_opt["name"]}: '
f'{len(val_set)}')
test_loaders.append(test_loader)
else:
val_set = build_dataset(dataset_opt)
test_loader = build_dataloader(
val_set,
dataset_opt,
num_gpu=opt['num_gpu'],
dist=opt['dist'],
sampler=None,
seed=opt['manual_seed'])
logger.info(
f'Number of val images in {dataset_type} {dataset_opt["name"]}: '
f'{len(val_set)}')
test_loaders.append(test_loader)
# create model
model = build_model(opt)
for test_loader in test_loaders:
test_set_name = test_loader.dataset.dataset_type
logger.info(f'Testing {test_set_name}...')
model.validation(test_loader, -1, None)
if __name__ == '__main__':
main()