forked from BigMacchia/flame_math
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsquare_matrix.py
612 lines (472 loc) · 18.6 KB
/
square_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
from flame_math.matrix import Matrix
from flame_math.vector import Vector
from flame_math import vector
from itertools import izip
class SquareMatrix(Matrix):
"""
This matrix class represent a squared matrix
"""
def __init__(self, size=4, data=None, identity = True):
Matrix.__init__(self,size, size)
"""
The constructor
Args:
:size: integer, the size of row and column matrix
:data: Vector[], an array of vectors used to initialize the columns of the mat
:identity: bool, wheter or not to initialize the matrix as idenitiy
"""
if identity:
self.set_identity()
if not identity and data:
self.data = data
@classmethod
def from_list(cls, size=4 , data=None):
"""
Alternative constuctor used to build a square matrix from a list of elements
Args:
:size: integer, the size of the NxN matrix
:data: float[], the data used for thea matrix columns
"""
vectors = []
for c in range(size):
vec = Vector([ data[c*size + r] for r in range(size)])
vectors.append(vec)
inst = cls(size,vectors,False)
return inst
@classmethod
def createMatrix44(cls, data=None, identity = True):
"""
Alternative constructor to crate a 4x4 matrix
:data: Vector[], an array of vectors used to initialize the columns of the mat
:identity: bool, wheter or not to initialize the matrix as idenitiy
"""
return cls(4, data, identity)
@classmethod
def createMatrix33(cls, data=None, identity = True):
"""
Alternative constructor to crate a 3x3 matrix
:data: Vector[], an array of vectors used to initialize the columns of the mat
:identity: bool, wheter or not to initialize the matrix as idenitiy
"""
return cls(3,data, identity)
@classmethod
def copy(cls, mat):
"""
Alternative constructor to generate a matrix identical to the given one
"""
return cls(mat.columns(),[Vector.copy(v) for v in mat.column_iterator()],False)
def set_identity(self):
"""
This function reset the matrix to the identity matrix
"""
dt = self.diagonal_iterator()
for TL, value, BL in dt:
TL.zero()
value=1
BL.zero()
dt.merge(TL, value, BL)
def set_to_diagonal(self, x):
"""
Set the matrix to be a diagonal matrix and set the diagonal to
the provided values
:x: floa[], the values of the diagonal
"""
dt = self.diagonal_iterator()
for TL, value, BL in dt:
TL.zero()
value= x[dt.counter-1]
BL.zero()
dt.merge(TL, value, BL)
def set_upper_triangular(self):
"""
Set the given matrix to upper diagonal matrix
"""
dt = self.diagonal_iterator()
for TL, value, BL in dt:
BL.zero()
dt.merge(TL, value, BL)
def set_lower_triangular(self):
"""
Set the matrix to lower diagonal matrix
"""
dt = self.diagonal_iterator()
for TL, value, BL in dt:
TL.zero()
dt.merge(TL, value, BL)
def set_strictly_upper_triangular(self):
"""
Set to strictly upper diagonal matrix, means that
also the diagonal is zeroed
"""
dt = self.diagonal_iterator()
for TL, value, BL in dt:
BL.zero()
value= 0
dt.merge(TL, value, BL)
def set_strictly_lower_triangular(self):
"""
Set to strictly lower diagonal matrix, means that
also the diagonal is zeroed
"""
dt = self.diagonal_iterator()
for TL, value, BL in dt:
TL.zero()
value=0
dt.merge(TL, value, BL)
def set_unit_upper_triangular(self):
"""
Setting the matrix to unit upper diagonal meaning the
diagonal will be ones
"""
dt = self.diagonal_iterator()
for TL, value, BL in dt:
BL.zero()
value= 1
dt.merge(TL, value, BL)
def set_unit_lower_triangular(self):
"""
Setting the matrix to unit lower diagonal meaning the
diagonal will be ones
"""
dt = self.diagonal_iterator()
for TL, value, BL in dt:
TL.zero()
value=1
dt.merge(TL, value, BL)
def set_transpose(self):
"""
In place transposition of the matrix, and usues a full iterator
explotiing the squareness to to the transpose
"""
it = self.full_iterator()
for data in it:
temp = data["a01"]
data["a01"] = data["at10"]
data["at10"] = temp
it.merge(data)
def set_upper_simmetry(self):
"""
Sets the upper matrix to be symmetrix to the lower
part
"""
it = self.full_iterator()
for data in it:
data["a01"] = data["at10"]
it.merge(data)
def set_lower_simmetry(self):
"""
Sets the lower part of the matrix to be symmetrix to the
uppper part of the matrix
"""
it = self.full_iterator()
for data in it:
data["at10"] = data["a01"]
it.merge(data)
#####################
## DOT OPERATIONS
####################
def mult_vec_upper_triangular_by_dot(self,vec):
"""
This function is multiplying a vector by an upper triangular matrix
using a parted matrix and the dot product approach, the optimmization comes
from the fact we don't need to perform the computation of the row before the
current diagonal index
:vec: Vector, the value to multiply
:returns: Vector
"""
result = Vector([0]* self.rows())
it = self.full_iterator()
vit = vec.vector_iterator()
for i,data in enumerate(it):
#we slice the vector calling manually the iterator next
tl, value, bl = vit.next()
#we accumualte the result in the proper index of the result vector
#the result is composed of the result of diagonal value being multiplied
#plus the row after the diagonal
result[i] = ( data["a11"] * value +
bl.dot(data["at12"]))
return result
def mult_vec_lower_triangular_by_dot(self,vec):
"""
This function is multiplying a vector by an upper triangular matrix
using a parted matrix and the dot product approach, the optimmization comes
from the fact we don't need to perform the computation of the row after the
current diagonal index
:vec: Vector, the value to multiply
:returns: Vector
"""
result = Vector([0]* self.rows())
it = self.full_iterator()
vit = vec.vector_iterator()
for i,data in enumerate(it):
#we slice the vector calling manually the iterator next
tl, value, bl = vit.next()
#we accumualte the result in the proper index of the result vector
#the result is composed of the result of diagonal value being multiplied
#plus the row before the diagonal
result[i] = ( data["a11"] * value +
tl.dot(data["at10"]))
return result
def mult_vec_upper_symmetric_by_dot(self,vec):
"""
This function multiplies the given vector by an upper simmetric matrix, this will
allow to perform less computation by exploiting the simmetry
:vec: Vector, the vector to be transformed
:returns: Vector
"""
result = Vector([0]* self.rows())
it = self.full_iterator()
vit = vec.vector_iterator()
for i,data in enumerate(it):
#we slice the vector calling manually the iterator next
tl, value, bl = vit.next()
#to nothe here instead the first part of the row (before the diagonal
#we use the column before the diagona, exploiting the simmetry
result[i] = (data["a01"].dot(tl) +
data["a11"] * value +
data["at12"].dot(bl))
return result
def mult_vec_lower_symmetric_by_dot(self,vec):
"""
This funtion transforms a vector using a lower simmetric matrix, means
we don't neet to use the upper traingular matrix which might old other
data, we use dot product under the hood to perform the computation
:vec: Vector, the vector to be transformed
"""
result = Vector([0]* self.rows())
it = self.full_iterator()
vit = vec.vector_iterator()
for i,data in enumerate(it):
#we slice the vector calling manually the iterator next
tl, value, bl = vit.next()
#here instead of the upper column before the diagonal we use the
#row before the diagonal
result[i] = (data["at10"].dot(tl) +
data["a11"] * value +
data["a21"].dot(bl))
return result
#####################
# AXPY OPERATIONS
####################
def mult_vec_upper_triangular_by_axpy(self, vec):
"""
This function implements an upper triangular matrix vector mult based on AXPY
:vec: Vector, the vector to work on
:returns: Vector
"""
result = Vector([0]* self.rows())
it = self.full_iterator()
vit = result.vector_iterator()
for i,data in enumerate(it):
#slicing the vector
tl, value, bl = vit.next()
#computing the diagonal value
value = data["a11"] * vec[i] + value
#computing the upper diagonal value, using an axpy
#and accumulating in the up vector
tl = data["a01"].axpy(tl,vec[i])
#merging the result back in
vit.merge(tl,value,bl)
return result
def mult_vec_lower_triangular_by_axpy(self, vec):
"""
This function implements a lower triangular matrix vector mult based on AXPY
:vec: Vector, the vector to work on
:returns: Vector
"""
result = Vector([0]* self.rows())
it = self.full_iterator()
vit = result.vector_iterator()
for i,data in enumerate(it):
#slicing the vector
tl, value, bl = vit.next()
#computing the diagonal value
value = data["a11"] * vec[i] + value
#computing the upper diagonal value, using an axpy
#and accumulating in the up vector
bl = data["a21"].axpy(bl,vec[i])
#merging the result back in
vit.merge(tl,value,bl)
return result
def mult_vec_upper_symmetric_by_axpy(self, vec):
"""
This function implements a matrix vector mult based on AXPY using an upper simmetrix matric
:vec: Vector, the vector to work on
:returns: Vector
"""
result = Vector([0]* self.rows())
it = self.full_iterator()
vit = result.vector_iterator()
for i,data in enumerate(it):
#slicing the vector
tl, value, bl = vit.next()
#computing the diagonal value
value = data["a11"] * vec[i] + value
#we perform two different axpy and we make up for the missing part
#by using the equivalent transposed of the column below the diagonal
#aka the row after the diagonal
tl = data["a01"].axpy(tl,vec[i])
bl = data["at12"].axpy(bl,vec[i])
#merging the result back in
vit.merge(tl,value,bl)
return result
def mult_vec_lower_symmetric_by_axpy(self, vec):
"""
This function implements a matrix vector mult based on AXPY using an upper simmetrix matric
:vec: Vector, the vector to work on
:returns: Vector
"""
result = Vector([0]* self.rows())
it = self.full_iterator()
vit = result.vector_iterator()
for i,data in enumerate(it):
#slicing the vector
tl, value, bl = vit.next()
#computing the diagonal value
value = data["a11"] * vec[i] + value
tl = data["at10"].axpy(tl,vec[i])
bl = data["a21"].axpy(bl,vec[i])
#merging the result back in
vit.merge(tl,value,bl)
return result
def gaussian_reduction_upper_triangular(self, store_coeff=False, vec=None):
"""
This function used gaussian reduction to reduce the linear system represented
by this linear matrix to an upper triangular matrix
:store_coeff: boolean, instead of zeroing the lower part here we will store the coefficents
of reduction
:vec: Vector, this is the appended column of the system = the column after the equals in the
equations system
:returns: Matrix
"""
mat = SquareMatrix.copy(self);
it = mat.full_iterator()
if vec:
vit = vec.vector_iterator()
for data in it:
if data["a21"].size() == 0:
break
coeff = (1.0 / data["a11"]) * data["a21"]
data["A22"].set_add(-(coeff.outer_product(data["at12"])))
if vec:
TL, value, BL = vit.next()
#here we could use += but is not implemented vector side yet
BL = BL + (-(value*coeff))
vit.merge(TL,value,BL)
if store_coeff:
data["a21"] = coeff
else:
data["a21"].zero()
it.merge(data)
return mat
def gaussian_appended_reduction_upper_triangular(self, vec):
"""
This function uses a gaussian matrix that has been previously reduced
and has the reduction coefficent stored in the lower triangular matrix
otherwise you will get crap
:vec: Vector, the vector representing the appended part of the system
"""
it = self.full_iterator()
cpy = vector.Vector.copy(vec)
vit = cpy.vector_iterator()
for data in it:
#we need to break the iteration in step earlier
#because make no sense to work with a column below
#the diagonal martix of size 0
if data["a21"].size() ==0:
break
TL, value, BL = vit.next()
BL = BL + (-(value*data["a21"]))
vit.merge(TL,value,BL)
return cpy
def lu_factorization_compact(self):
"""
This function retunrs the LU factorization for the matrix,
the result is stored in a single matrix, means that the diagonal
for the lower unit matrix wont be written but we know it s unit lower
diagonal
:returns: SquareMatrix
"""
mat = SquareMatrix.copy(self)
it = mat.full_iterator()
for data in it:
#we need to break the iteration in step earlier
#because make no sense to work with a column below
#the diagonal martix of size 0
if data["a21"].size() ==0:
break
#we accumulate directly on the matrix itself
data["a21"] = (1.0/ data["a11"]) * data["a21"]
data["A22"].set_add(-( data["a21"].outer_product(data["at12"])))
it.merge(data)
return mat
def lu_factorization(self):
"""
This function retunrs the LU factorization for the matrix,
:returns: SquareMatrix L, SquareMatrix U
"""
it = self.full_iterator()
L = SquareMatrix.copy(self)
U = SquareMatrix.copy(self)
L.set_identity()
#U.set_upper_triangular()
lit = L.full_iterator()
uit = U.full_iterator()
for data , ldata, udata in izip(it, lit, uit):
if data["a21"].size() ==0:
break
ldata["a21"] = (1.0/ udata["a11"]) * udata["a21"]
udata["A22"].set_add(-( ldata["a21"].outer_product(udata["at12"])))
udata["a21"].zero()
lit.merge(ldata)
uit.merge(udata)
return L, U
def solve_lower_triangular_system(self, b):
"""
This function is going to solve for
L*z = b
where we solve for z, b is given and L is a lower unit triangular matrix
(most likely the result of a LU operation)
:b: Vector, the vector needed to solve the system
:returns: Vector
"""
res = Vector.copy(b)
bit = res.vector_iterator()
it = self.full_iterator()
for TL,value,BL in bit:
data = it.next()
BL = BL + (-(value * data["a21"]))
bit.merge(TL,value,BL)
return res
def solve_upper_triangular_system(self,b):
"""
This function is the complementary one for solving a liner equation system
based on LU,
with solve_lower_triangular_system we solved L* z = b
where now we can solve U* x = b where z = U*x and U is the upper triangular
matrix from the factoriazition, basically we are performing a backward sostiuition
:b: Vector, the vector needed to solve the system
:returns: Vector
"""
res = Vector.copy(b)
bit = res.vector_iterator(True)
it = self.full_iterator(True)
for TL,value,BL in bit:
data = it.next()
value -= data["at12"].dot(BL)
value /= data["a11"]
bit.merge(TL,value,BL)
return res
def solve_linear_system(self,b):
"""
This function solves a linear system composed by the equation at
left of the equal signe composed by the matrix (self), and the right
part (after the equal) composed by the vector b
the function will fist compute the L, U factorization then solve L(Ux) =b
:b: Vector
:returns: Vector
"""
L,U = self.lu_factorization()
res = L.solve_lower_triangular_system(b)
res = U.solve_upper_triangular_system(res)
return res