Skip to content

Latest commit

 

History

History
43 lines (35 loc) · 19.1 KB

Relevant Background Formulas.md

File metadata and controls

43 lines (35 loc) · 19.1 KB

Analytical Formulas for DUV Laser Diode Lithography System with Compliant Mechanical Components

This document outlines key analytical formulas relevant to the design and optimization of a DUV laser diode lithography system integrated with compliant mechanical components. These formulas span optics, materials science, and mechanical engineering.

Equation (in LaTeX) and Identifier Description & Variables Representative References
1. Gaussian Beam Divergence

(\displaystyle \theta = \frac{\lambda}{\pi,w_0})
- (\theta): Full divergence angle
- (\lambda): Laser wavelength (e.g., 193 nm)
- (w_0): Beam waist radius
- Saleh, B. E. A., and Teich, M. C., Fundamentals of Photonics (Wiley, 2019)
2. Rayleigh Range

(\displaystyle z_{R} = \frac{\pi,w_0^2}{\lambda})
- (z_{R}): Rayleigh range (distance over which beam radius grows by (\sqrt{2}))
- (w_0): Beam waist radius
- (\lambda): Laser wavelength
- Saleh, B. E. A., and Teich, M. C., Fundamentals of Photonics (Wiley, 2019)
3. Focal Spot Size

(\displaystyle d_{f} = \frac{4,\lambda,f}{\pi,D})
- (d_f): Diameter of the focal spot
- (\lambda): Laser wavelength
- (f): Focal length of the lens
- (D): Lens aperture diameter
- Saleh, B. E. A., and Teich, M. C., Fundamentals of Photonics (Wiley, 2019)
4. Minimum Feature Size (Rayleigh Criterion)

(\displaystyle R = k,\frac{\lambda}{NA})
- (R): Resolution limit
- (k): Process factor (typ. (0.25)–(0.5))
- (\lambda): Exposure wavelength
- (NA): Numerical aperture
- Saleh, B. E. A., and Teich, M. C., Fundamentals of Photonics (Wiley, 2019)
5. Steady-State Heat Transfer

(\displaystyle q = k,A,\frac{\Delta T}{L})
- (q): Heat flux
- (k): Thermal conductivity
- (A): Cross-sectional area
- (\Delta T): Temperature difference
- (L): Length of the heat conduction path
- Shigley, J. E., et al., Mechanical Engineering Design (McGraw-Hill, 2019)
6. Linear Elasticity (Hooke’s Law)

(\displaystyle \sigma = E,\epsilon)
- (\sigma): Stress
- (E): Young’s modulus
- (\epsilon): Strain
- Shigley, J. E., et al., Mechanical Engineering Design (McGraw-Hill, 2019)
7. Deflection of a Cantilever Beam

(\displaystyle \delta = \frac{F,L^3}{3,E,I})
- (\delta): Maximum deflection
- (F): Applied force
- (L): Beam length
- (E): Young’s modulus
- (I): Moment of inertia (2nd moment of area)
- Shigley, J. E., et al., Mechanical Engineering Design (McGraw-Hill, 2019)
8. Natural Frequency (Vibration Control)

(\displaystyle f_{n} = \frac{1}{2\pi},\sqrt{\frac{k}{m}} )
- (f_n): Resonant (natural) frequency
- (k): Stiffness
- (m): Mass
- Shigley, J. E., et al., Mechanical Engineering Design (McGraw-Hill, 2019)
9. Absorptance at DUV Wavelengths

(\displaystyle A = 1 - T - R)
- (A): Absorptance
- (T): Transmittance
- (R): Reflectance
- Material Properties at DUV Wavelengths: Experimental Reports
10. Thermal Expansion

(\displaystyle \Delta L = \alpha,L,\Delta T)
- (\Delta L): Change in length
- (\alpha): Coefficient of thermal expansion
- (L): Original length
- (\Delta T): Temperature change
- Material Properties at DUV Wavelengths: Experimental Reports
11. Beam Misalignment Correction

(\displaystyle \theta_{\text{corr}} = \tan^{-1}!\Bigl(\tfrac{y}{z}\Bigr))
- (\theta_{\text{corr}}): Corrective angle
- (y): Lateral displacement
- (z): Longitudinal distance
- Shigley, J. E., et al., Mechanical Engineering Design (McGraw-Hill, 2019)
Equation/Formula Description / Usage Representative References
1. Maxwell’s Wave Equation

(\nabla^2 \mathbf{E} - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0)
Governs electromagnetic wave propagation in free space and waveguides. For DUV laser diode cavity design, analyzing light confinement and mode patterns is critical. - Jackson, J. D. Classical Electrodynamics, 3rd ed. (Wiley, 2021)
- Saleh, B. E. A., and Teich, M. C. Fundamentals of Photonics, 3rd ed. (Wiley, 2019)
2. Semiconductor Rate Equations

(\begin{cases} \frac{dN}{dt} = \frac{I}{qV} - \frac{N}{\tau_n} - G(N,S), \[6pt] \frac{dS}{dt} = \Gamma \beta \frac{N}{\tau_{sp}} + \Gamma G(N,S) - \frac{S}{\tau_p} \end{cases})
Models carrier density ((N)) and photon density ((S)) in semiconductor lasers, crucial for optimizing DUV diode output power and efficiency. - Coldren, L. A., Corzine, S. W., and Mašanović, M. L. Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2018)
- Agrawal, G. P. Fiber-Optic Communication Systems, 5th ed. (Wiley, 2021)
3. Transfer Matrix for Multilayer Thin Films

(\mathbf{M} = \begin{pmatrix} m_{11} & m_{12} \ m_{21} & m_{22} \end{pmatrix} = \prod_{j=1}^{N} \begin{pmatrix} \cos(\delta_j) & i \sin(\delta_j)/\eta_j \ i \eta_j \sin(\delta_j) & \cos(\delta_j) \end{pmatrix})
Used for modeling reflectivity and transmission in multilayer coatings (e.g., dielectric or semiconductor coatings) to achieve high reflectance mirrors for DUV diode cavities. - Macleod, H. A. Thin-Film Optical Filters, 5th ed. (CRC Press, 2019)
- Born, M. and Wolf, E. Principles of Optics, 8th ed. (Cambridge University Press, 2019)
4. Refractive Index Dispersion (Sellmeier Equation)

(n^2(\lambda) = 1 + \sum_{i=1}^{k} \frac{B_i \lambda^2}{\lambda^2 - C_i})
Relates the refractive index (n) to wavelength (\lambda). Essential for designing DUV optical elements, as dispersion and material absorption become significant at short wavelengths. - Malitson, I. H., “Interspecimen Comparison of Refractive Indexes,” J. Opt. Soc. Am. 55, 1205–1209 (1965)
- Li, H. H., “Refractive Index of Al(_2)O(_3),” J. Phys. Chem. Ref. Data 5, 329–345 (1976)
5. Fourier Heat Conduction Equation

(\nabla^2 T = \frac{1}{\alpha} \frac{\partial T}{\partial t})
Governs heat transfer in laser diodes and optical assemblies. Proper thermal management is paramount in high-power DUV systems to maintain performance and reliability. - Incropera, F. P. et al., Fundamentals of Heat and Mass Transfer, 8th ed. (Wiley, 2020)
- Carslaw, H. S. and Jaeger, J. C. Conduction of Heat in Solids, 2nd ed. (Oxford University Press, 2019)
6. Stress-Strain Relationship (Hooke’s Law)

(\boldsymbol{\sigma} = \mathbf{E} : \boldsymbol{\varepsilon})
Fundamental to mechanical design of compliant mechanisms. In matrix form, (\sigma = E \cdot \varepsilon) for 1D models, with generalized forms for anisotropic materials. - Hibbeler, R. C. Mechanics of Materials, 10th ed. (Pearson, 2022)
- Gere, J. M. and Timoshenko, S. P. Mechanics of Materials, 6th ed. (CL Engineering, 2021)
7. Pseudo-Rigid-Body Model for Flexures

(k_\theta = \frac{E I}{L_\mathrm{eff}})
Simplifies the analysis of compliant mechanisms by representing flexure elements as rotational springs. Critical for high-precision alignment in lithography stages. - Howell, L. L. Compliant Mechanisms, 2nd ed. (Wiley, 2021)
- Kota, S., “Design of Compliant Mechanisms,” ASME J. Mech. Des. 142, 052301 (2020)
8. Topology Optimization Objective

(\min_{\rho} ;; C = \int_V \mathbf{\sigma} : \mathbf{\varepsilon} , dV, \quad \text{s.t.} \quad 0 \leq \rho(x) \leq 1)
Used in designing complex compliant structures with optimal stiffness and compliance distribution. Useful in advanced lithography stages where minimal distortion under load is required. - Bendsoe, M. P. and Sigmund, O. Topology Optimization: Theory, Methods, and Applications (Springer, 2019)
- Maute, K. and Sigmund, O., “Topology Optimization Approaches,” ASME Appl. Mech. Rev. 72, 060801 (2020)
Equation / Concept Formula or Expression Reference (Examples) Relevance to DUV Laser-Diode–Based Lithography
1. Bandgap of Ternary Al_xGa_{1–x}N (\displaystyle E_g(\mathrm{[Al_x]Ga_{1-x}N}) \approx x , E_g(\mathrm{AlN}) + (1 - x) , E_g(\mathrm{GaN}) - b, x (1 - x))

where:
(\displaystyle E_g(\mathrm{AlN}) \approx 6.0 \text{ eV}, \quad E_g(\mathrm{GaN}) \approx 3.4 \text{ eV}, \quad b \approx 1.0\text{ eV}) (bowing parameter).
- O. Ambacher, J. Phys. D: Appl. Phys. 31, 2653 (1998).
- Y. Zhang et al., Appl. Phys. Lett. 106, 032104 (2015).
- Determines the photon energy (wavelength) of the laser diode.
- Accurate bandgap engineering is critical for designing active regions that emit in the deep UV (200–250 nm).
2. Threshold Carrier Density in Quantum Wells (\displaystyle N_\text{th} \approx \frac{\alpha_\text{loss}}{\Gamma , \sigma_\text{gain}})

where:
(\displaystyle \alpha_\text{loss}) is total optical loss,
(\displaystyle \Gamma) is the confinement factor,
(\displaystyle \sigma_\text{gain}) is the stimulated emission cross-section.
- S. Nakamura and G. Fasol, The Blue Laser Diode, Springer (1997).
- K. Kumakura et al., J. Appl. Phys. 129, 051101 (2021).
- Sets the minimum carrier density needed for lasing.
- Helps optimize active region design (quantum well thickness, composition) to achieve the lowest threshold in high-Al-content AlGaN-based DUV lasers.
3. Threshold Current Density (\displaystyle J_\text{th} = e , d_\mathrm{QW} , \frac{N_\text{th}}{\tau})

where:
(\displaystyle d_\mathrm{QW}) is the quantum well thickness,
(\displaystyle \tau) is the carrier lifetime, and (e) is the electron charge.
- E. F. Schubert, Light-Emitting Diodes, 3rd ed., Cambridge University Press (2018).
- M. Iwaya et al., Appl. Phys. Lett. 108, 142101 (2016).
- Lower J_th is critical for high efficiency and reliable operation.
- In DUV lasers, high defect densities in AlGaN can shorten carrier lifetime, making threshold management essential for stable lasing.
4. DBR (Distributed Bragg Reflector) Reflectivity (\displaystyle R_\text{DBR} \approx \left(\frac{n_H - n_L}{n_H + n_L}\right)^{2N})

where:
(n_H) and (n_L) are the refractive indices of high- and low-index layers, and (N) is the number of pairs.
- L. Li et al., Opt. Express 29, 2150 (2021).
- T. P. Chen et al., Photon. Res. 9, 1228 (2021).
- High-reflectivity mirrors at 200–250 nm are challenging due to material absorption in the DUV.
- DBRs are key for optical feedback and for building VCSEL-like DUV devices.
5. Poynting’s Theorem & Optical Confinement (\displaystyle \nabla \cdot \mathbf{S} + \frac{\partial u}{\partial t} = - \mathbf{J} \cdot \mathbf{E})

where (\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B})) is the Poynting vector and (u) is the electromagnetic energy density.

This underlies electromagnetic wave propagation and optical confinement in waveguides/cavities.
- J. D. Jackson, Classical Electrodynamics, 3rd ed., Wiley (1998).
- W. L. Barnes et al., Nature 424, 824 (2003).
- Fundamental for cavity design and evaluating losses vs. confinement in DUV resonators.
- Important when modeling metamaterial waveguides for sub-wavelength optical confinement at 200 nm.
6. Heat Conduction & Thermal Management (\displaystyle \nabla \cdot (k \nabla T) + Q = 0)

where:
(\displaystyle k) is thermal conductivity,
(\displaystyle T) is temperature,
(\displaystyle Q) is heat generation rate (e.g., from non-radiative recombination).
- C. J. Vineis et al., J. Appl. Phys. 109, 033709 (2011).
- Y. Wu et al., IEEE Trans. Electron Devices 68, 2801 (2021).
- Critical for device reliability in DUV lasers, as high-Al-content materials can have low thermal conductivity.
- Ensures consistent junction temperature and avoids thermal rollover (premature output power saturation).
7. ALE (Atomic Layer Etching) Surface Reaction Kinetics (\displaystyle R_\mathrm{etch} \approx \frac{k_\mathrm{react} , [\mathrm{F}] , \exp(-E_a/k_B T)}{1 + K , [\mathrm{Etch Products}]})

where:
(\displaystyle k_\mathrm{react}) is the reaction rate constant,
(\displaystyle [\mathrm{F}]) is the flux of reactive species (e.g., halogens),
(\displaystyle E_a) is the activation energy.
- T. Faraz et al., J. Vac. Sci. Technol. A 37, 030801 (2019).
- H. Kim et al., ACS Nano 14, 17256 (2020).
- Cryogenic ALE can yield atomically smooth facets and minimal surface damage for AlGaN structures.
- Improves optical performance by reducing scattering and defect-induced absorption in the DUV active region or mirror facets.
8. Spontaneous Emission Rate & Internal Quantum Efficiency (\displaystyle R_\text{sp} = B , n^2,\quad \eta_\text{IQE} = \frac{R_\text{rad}}{R_\text{rad} + R_\text{nonrad}})

where:
(B) is the bimolecular (radiative) recombination coefficient,
(n) is the carrier density.
- S. Chichibu et al., Nat. Mater. 2, 74 (2003).
- Y. Zhang et al., Phys. Rev. Appl. 15, 064001 (2021).
- Internal quantum efficiency ((\eta_\text{IQE})) critically impacts light output in DUV lasers.
- High Al-content AlGaN can suffer large non-radiative recombination, making (\eta_\text{IQE}) optimization a primary design challenge.