-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset.py
65 lines (52 loc) · 2.62 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from torchvision.datasets import VisionDataset, CIFAR100
from torchvision import transforms
from torch.utils.data import DataLoader
import torch
import numpy as np
class Cifar100(VisionDataset):
def __init__(self, root, train, transform=None, target_transform=None):
super(Cifar100, self).__init__(root, transform=transform, target_transform=target_transform)
self.dataset = CIFAR100(root=root, train=train, download=True, transform=None)
self.transform = transform
self.pixel_mean = self.__getPixelMean__(root)
shuffled_classes = [33, 29, 7, 71, 48, 53, 58, 80, 11, 91, 18, 84, 78, 36, 60,
1, 96, 90, 57, 54, 85, 17, 4, 92, 51, 99, 24, 95, 88, 89, 47,
22, 46, 12, 59, 19, 72, 82, 10, 26, 87, 68, 34, 39, 8, 16, 77,
21, 41, 97, 73, 38, 43, 63, 94, 9, 6, 2, 31, 14, 64, 15, 27, 23,
37, 45, 49, 74, 65, 83, 40, 75, 62, 50, 61, 79, 69, 81, 25, 66,
76, 3, 98, 30, 35, 5, 32, 52, 67, 20, 28, 0, 55, 13, 56, 42, 86,
44, 93, 70]
# Define classes per batch
self.class_batches = dict.fromkeys(np.arange(10))
for i in range(10):
self.class_batches[i] = shuffled_classes[i*10:(i*10+10)]
# Dictionary key:batch, value:batch_indexes
self.batch_indexes = self.__BatchIndexes__()
# Map labels from 0 to 99
self.label_map = {k: v for v, k in enumerate(shuffled_classes)}
def __getitem__(self, index):
image, label = self.dataset[index]
if self.transform is not None:
image = self.transform(image)
image -= self.pixel_mean
return image, self.label_map[label]
def __len__(self):
return len(self.dataset)
def __BatchIndexes__(self):
batches = dict.fromkeys(np.arange(10))
for i in range(10):
batches[i] = []
for idx,item in enumerate(self.dataset):
for i in range(10):
if item[1] in self.class_batches[i]:
batches[i].append(idx)
return batches
def __getBatchIndexes__(self,batch_index):
return self.batch_indexes[batch_index]
def __getPixelMean__(self,root):
dataset = CIFAR100(root=root,train=True,transform=transforms.ToTensor())
mean = torch.zeros((3,32,32))
loader = DataLoader(dataset, batch_size=1024, shuffle=False, num_workers=4, drop_last=False)
for images, _ in loader:
mean += sum(images)
return mean / 50000