-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegmenterTrainPytorch.py
197 lines (159 loc) · 5.35 KB
/
segmenterTrainPytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import kaggleDataLoader
import json
from joblib import Memory
from matplotlib import pyplot as plt
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.optim import lr_scheduler
from torch.utils.tensorboard import SummaryWriter
import pandas as pd
from monai.data import decollate_batch, DataLoader,Dataset,ImageDataset
from monai.metrics import DiceMetric
from monai.losses.dice import DiceLoss
from monai.networks.nets import UNet, BasicUNet
from monai.networks.layers import Norm
from monai.visualize import plot_2d_or_3d_image
from monai.transforms import AsDiscrete
import torch.cuda.amp as amp
import torchio as tio
with open('config.json', 'r') as f:
paths = json.load(f)
cachedir = paths["CACHE_DIR"]
memory = Memory(cachedir, verbose=0, compress=True)
resize = tio.Resize((128, 128, 200))
def cacheFunc(data, indexes):
return resize(data[indexes])
cacheFunc = memory.cache(cacheFunc)
oneHot = tio.OneHot()
flip = tio.RandomFlip(axes=('LR'))
aniso = tio.RandomAnisotropy()
noise = tio.RandomNoise()
augmentations = tio.Compose([flip,aniso,noise,oneHot])
toDiscrete = AsDiscrete(argmax=True, to_onehot=2)
class cachingDataset(Dataset):
def __init__(self, data):
self.dataset = data
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return augmentations(cacheFunc(self.dataset,idx))
root_dir="./"
if torch.cuda.is_available():
print("GPU enabled")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dataset = kaggleDataLoader.KaggleDataLoader()
train, val = dataset.loadDatasetAsSegmentor(trainPercentage=0.80)
train = cachingDataset(train)
val = cachingDataset(val)
train_loader = DataLoader(
train, batch_size=1, shuffle=True, prefetch_factor=4, persistent_workers=True, drop_last=True, num_workers=16)
val_loader = DataLoader(
val, batch_size=1, num_workers=16)
N_EPOCHS = 300
model = BasicUNet(spatial_dims=3,
in_channels=1,
features=(32, 64, 128, 256, 512, 32),
out_channels=2).to(device)
optimizer = torch.optim.Adam(model.parameters(), 1e-5)
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=N_EPOCHS)
scaler = amp.GradScaler()
loss = DiceLoss(softmax=True)
val_interval = 1
dice_metric = DiceMetric(include_background=False, reduction="mean")
PATIENCE = 10
loss_hist = []
val_loss_hist = []
patience_counter = 0
best_val_loss = np.inf
batchCount = 0
#https://www.kaggle.com/code/samuelcortinhas/rnsa-3d-model-train-pytorch
writer = SummaryWriter()
#Loop over epochs
for epoch in tqdm(range(N_EPOCHS)):
loss_acc = 0
val_loss_acc = 0
train_count = 0
valid_count = 0
# Loop over batches
for batch in train_loader:
# Zero gradients
optimizer.zero_grad()
# Send to device
imgs = batch['ct']['data']
labels = batch['seg']['data']
imgs = imgs.to(device)
labels = labels.to(device)
# Forward pass
with amp.autocast(dtype=torch.float16):
preds = model(imgs)
L = loss(preds, labels)
# Backprop
scaler.scale(L).backward()
scaler.step(optimizer)
scaler.update()
# L.backward()
# Update parameters
# optimizer.step()
# Track loss
loss_acc += L.detach().item()
train_count += 1
print("finished batch")
# Update learning rate
scheduler.step()
# Don't update weights
with torch.no_grad():
# Validate
for batch in val_loader:
# Reshape
val_imgs = batch['ct']['data']
val_labels = batch['seg']['data']
val_imgs = val_imgs.to(device)
val_labels = val_labels.to(device)
# Forward pass
val_preds = model(val_imgs)
val_preds = toDiscrete(val_preds)
dice_metric(y_pred=val_preds, y=val_labels)
# Track loss
valid_count += 1
print("finished validation batch")
metric = dice_metric.aggregate().item()
# reset the status for next validation round
dice_metric.reset()
val_loss_hist.append(metric)
writer.add_scalar("val_mean_dice", metric, epoch + 1)
loss_acc = abs(loss_acc)
# Save loss history
loss_hist.append(loss_acc / train_count)
#tensorboard logging
plot_2d_or_3d_image(val_imgs,epoch+1,writer,index=0,tag='image')
plot_2d_or_3d_image(val_labels,epoch+1,writer,index=0,tag='GT')
plot_2d_or_3d_image(val_preds,epoch+1,writer,index=0,tag='output')
# Print loss
if (epoch + 1) % 1 == 0:
print(
f'Epoch {epoch + 1}/{N_EPOCHS}, loss {loss_acc / train_count:.5f}, val_loss {metric:.5f}')
# Save model (& early stopping)
if (metric) < best_val_loss:
best_val_loss = metric
patience_counter = 0
print('Valid loss improved --> saving model')
torch.save(model, str("Unet3D_resized_128x128x200"+str(epoch)+".pt"))
writer.close()
print('')
print('Training complete!')
# log loss
data = {'val_loss':val_loss_hist,'loss':loss_hist}
df = pd.DataFrame(data=data)
df.to_csv("results.csv", sep='\t')
# Plot loss
plt.figure(figsize=(10,5))
plt.plot(loss_hist, c='C0', label='loss')
plt.plot(val_loss_hist, c='C1', label='val_loss')
plt.title('DiceLoss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.savefig("train_result.png")
plt.show()