-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassifierTrainPytorch.py
208 lines (166 loc) · 6.2 KB
/
ClassifierTrainPytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import kaggleDataLoader
import json
from joblib import Memory
from matplotlib import pyplot as plt
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.optim import lr_scheduler
from torch.utils.tensorboard import SummaryWriter
import pandas as pd
from monai.data import decollate_batch, DataLoader,Dataset,ImageDataset
from monai.networks.nets import DenseNet121
from sklearn.metrics import classification_report
import torch.cuda.amp as amp
import torchio as tio
with open('config.json', 'r') as f:
paths = json.load(f)
segWeights = paths["seg_weights"]
cachedir = paths["CACHE_DIR"]
memory = Memory(cachedir, verbose=0, compress=True)
def cacheFunc(data, indexes):
return data[indexes]
cacheFunc = memory.cache(cacheFunc)
flip = tio.RandomFlip()
affine = tio.RandomAffine()
gamma = tio.RandomGamma(0.5)
aniso = tio.RandomAnisotropy(p=0.25)
noise = tio.RandomNoise(p=0.25)
augmentations = tio.Compose([flip, affine, aniso, noise, gamma])
class cachingDataset(Dataset):
def __init__(self, data):
self.dataset = data
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
batch = cacheFunc(self.dataset, idx)
return augmentations(batch)
# Replicate competition metric (https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/discussion/341854)
loss_fn = nn.BCEWithLogitsLoss(reduction='none')
root_dir="./"
if torch.cuda.is_available():
print("GPU enabled")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
target_cols = ['C1', 'C2', 'C3',
'C4', 'C5', 'C6', 'C7',
'patient_overall']
# Replicate competition metric (https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/discussion/341854)
competition_weights = {
'-' : torch.tensor([1, 1, 1, 1, 1, 1, 1, 7], dtype=torch.float, device=device),
'+' : torch.tensor([2, 2, 2, 2, 2, 2, 2, 14], dtype=torch.float, device=device),
}
# y_hat.shape = (batch_size, num_classes)
# y.shape = (batch_size, num_classes)
# with row-wise weights normalization (https://www.kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection/discussion/344565)
def competiton_loss_row_norm(y_hat, y):
loss = loss_fn(y_hat, y)
weights = y * competition_weights['+'] + (1 - y) * competition_weights['-']
loss = (loss * weights).sum(axis=1)
w_sum = weights.sum(axis=1)
loss = torch.div(loss, w_sum)
return loss.mean()
dataset = kaggleDataLoader.KaggleDataLoader()
train, val = dataset.loadDatasetAsClassifier()
train = cachingDataset(train)
train_loader = DataLoader(
train, batch_size=16, shuffle=True, prefetch_factor=16, persistent_workers=True, drop_last=True, num_workers=32)
val_loader = DataLoader(
val, batch_size=8, num_workers=32)
# train_loader = DataLoader(
# train, batch_size=1, shuffle=True, num_workers=0)
# val_loader = DataLoader(
# val, batch_size=1, num_workers=0)
N_EPOCHS = 500
model = DenseNet121(spatial_dims=3, in_channels=1, out_channels=8).to(device)
model = nn.DataParallel(model)
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), 1e-4)
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=N_EPOCHS)
scaler = amp.GradScaler()
val_interval = 1
loss_hist = []
val_loss_hist = []
patience_counter = 0
best_val_loss = np.inf
writer = SummaryWriter()
#https://www.kaggle.com/code/samuelcortinhas/rnsa-3d-model-train-pytorch
#Loop over epochs
for epoch in tqdm(range(N_EPOCHS)):
loss_acc = 0
val_loss_acc = 0
train_count = 0
valid_count = 0
# Loop over batches
for batch in train_loader:
# Send to device
imgs = batch['ct']['data']
labels = torch.FloatTensor([[batch[target_col][line] for target_col in target_cols] for line in range(0,len(batch['C1']))])
imgs = imgs.to(device)
labels = labels.to(device)
# Forward pass
with amp.autocast(dtype=torch.float16):
preds = model(imgs)
L = competiton_loss_row_norm(preds, labels)
# Backprop
scaler.scale(L).backward()
scaler.step(optimizer)
scaler.update()
# # Backprop
# L.backward()
# # Update parameters
# optimizer.step()
# #
# # Zero gradients
optimizer.zero_grad()
#Track loss
loss_acc += L.detach().item()
train_count += 1
print("finished batch " + str(train_count))
# Update learning rate
scheduler.step()
# Don't update weights
with torch.no_grad():
# Validate
for batch in val_loader:
# Reshape
val_imgs = batch['ct']['data']
val_labels = torch.FloatTensor([[batch[target_col][line] for target_col in target_cols] for line in range(0,len(batch['C1']))])
val_imgs = val_imgs.to(device)
val_labels = val_labels.to(device)
# Forward pass
with amp.autocast(dtype=torch.float16):
val_preds = model(val_imgs)
val_L = competiton_loss_row_norm(val_preds, val_labels)
# Track loss
val_loss_acc += val_L.item()
valid_count += 1
print("finished validation batch")
# Save loss history
loss_hist.append(loss_acc / train_count)
val_loss_hist.append(val_loss_acc / valid_count)
writer.add_scalar("train_loss", loss_acc / train_count,epoch + 1)
writer.add_scalar("val_loss", val_loss_acc / valid_count, epoch + 1)
# Print loss
if (epoch + 1) % 1 == 0:
print(
f'Epoch {epoch + 1}/{N_EPOCHS}, loss {loss_acc / train_count:.5f}, val_loss {val_loss_acc / valid_count:.5f}')
# Save model (& early stopping)
torch.save(model, str("classifier_dist_DenseNet121_" + str(epoch)+".pt"))
writer.close()
print('')
print('Training complete!')
# log loss
data = {'val_loss':val_loss_hist,'loss':loss_hist}
df = pd.DataFrame(data=data)
df.to_csv("train_log_densenet121.csv", sep='\t')
# Plot loss
plt.figure(figsize=(10, 5))
plt.plot(loss_hist, c='C0', label='loss')
plt.plot(val_loss_hist, c='C1', label='val_loss')
plt.title('Competition metric')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.savefig("train_result_densenet121.png")
plt.show()