-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathdepthwise_simt_conv2dfprop.cu
682 lines (551 loc) · 24.2 KB
/
depthwise_simt_conv2dfprop.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/***************************************************************************************************
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/**
This example shows how to run depthwise 2d convolution kernels using functions and data structures
provided by CUTLASS using SIMT instruction;
There are 3 types of implementations of depthwise 2d convoltion
1. kAnalytic
Implicit gemm 2d convoltion algorithm.
2. kOptimized
An optimized algorithm and supports arbitrary stride and dilation.
3. kFixedStrideDilation
An optimized algorithm with fixed stride and dilation to reduce the runtime computation and do
more optimizations.
In general, the perf of kFixedStrideDilation would be better than kOptimized. However, if the filter
size, stride or dilation is large, it would encounter register spilling and may hurt the perf. If
in this case, please use kOptimized.
For kOptimized and kFixedStrideDilation, in order to fully utilize GPU hardware resources and achieve
better perf, when the output tensor size is large, splitk should be enabled to achieve better perf.
In this example, it demonstrates how to construct and run a FixedStrideDilation depthwise 2d
convolution kernel.
*/
#include <iostream>
#include <fstream>
#include <sstream>
#include "cutlass/cutlass.h"
#include "cutlass/gemm/device/gemm.h"
#include "cutlass/conv/kernel/default_depthwise_fprop.h"
#include "cutlass/conv/device/implicit_gemm_convolution.h"
#include "cutlass/conv/device/direct_convolution.h"
#include "cutlass/util/command_line.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/device/gemm.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/convolution.h"
#include "cutlass/util/tensor_view_io.h"
#include "helper.h"
// The code section below describes datatype for input, output tensors and computation between
// elements
using ElementAccumulator = cutlass::half_t; // Data type of accumulator
using ElementComputeEpilogue = cutlass::half_t; // Data type of epilogue computation (alpha, beta)
using ElementInputA = cutlass::half_t; // Data type of elements in input tensor
using ElementInputB = cutlass::half_t; // Data type of elements in input tensor
using ElementOutput = cutlass::half_t; // Data type of elements in output tensor
using LayoutInputA = cutlass::layout::TensorNHWC;
using LayoutInputB = cutlass::layout::TensorNHWC;
using LayoutOutput = cutlass::layout::TensorNHWC;
// This code section describes whether you want to use tensor cores or regular SIMT cores on GPU SM
using MMAOp = cutlass::arch::OpClassSimt;
// This code section describes CUDA SM architecture number
using SmArch = cutlass::arch::Sm60;
// This code section describes the groups a thread block will compute
constexpr int groups_per_cta = 64;
// This code section describes the output tile <N, O, P, Q> a thread block will compute
using ThreadBlockOutputShape = cutlass::conv::TensorNHWCShape<1, 8, 8, groups_per_cta>;
// This code section describes the filter shape <R, S>
using FilterShape = cutlass::MatrixShape<3, 3>;
// Threadblock tile shape
using ThreadblockShape =
cutlass::gemm::GemmShape<ThreadBlockOutputShape::kNHW, groups_per_cta, FilterShape::kCount>;
// This code section describes tile size a warp will computes
// WarpShape::kM = P * Q the warps would process
// WarpShape::kN = groups_per_cta that the warps would process
// WarpShape::kK = filter_size that the warps would process
using WarpShape = cutlass::gemm::GemmShape<16, groups_per_cta, FilterShape::kCount>;
// This code section describes the size of MMA op
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 1>;
// This code section describes how threadblocks are scheduled on GPU
using SwizzleThreadBlock =
cutlass::conv::threadblock::DepthwiseDirect2dConvIdentityThreadblockSwizzle<
1,
ThreadBlockOutputShape::kN,
ThreadBlockOutputShape::kH,
ThreadBlockOutputShape::kW>;
// Number of pipelines you want to use
constexpr int NumStages = 4;
// This code section describe iterator algorithm selected is kFixedStrideDilation
static cutlass::conv::IteratorAlgorithm const IteratorAlgorithm =
cutlass::conv::IteratorAlgorithm::kFixedStrideDilation;
using StrideShape = cutlass::MatrixShape<1, 1>;
using DilationShape = cutlass::MatrixShape<1, 1>;
constexpr int kEpilogueElementsPerAccess = 128 / cutlass::sizeof_bits<ElementOutput>::value;
// This code section describes the epilogue part of the kernel, we use default value
using EpilogueOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput, // Data type of output matrix.
kEpilogueElementsPerAccess, // The number of elements per vectorized.
// memory access. This becomes the vector width of
// math instructions in the epilogue too.
ElementAccumulator, // Data type of accumulator
ElementComputeEpilogue, // Data type for alpha/beta in linear combination
cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling>; // Epilogue scaling operation.
using DepthwiseDirect2dConv = typename cutlass::conv::kernel::DefaultDepthwiseDirect2dConvFprop<
ElementInputA,
LayoutInputA,
ElementInputB,
LayoutInputB,
ElementOutput,
LayoutOutput,
ElementAccumulator,
MMAOp,
SmArch,
ThreadblockShape,
ThreadBlockOutputShape,
FilterShape,
WarpShape,
InstructionShape,
EpilogueOp,
SwizzleThreadBlock,
NumStages,
cutlass::arch::OpMultiplyAdd,
IteratorAlgorithm,
cutlass::conv::StrideSupport::kFixed,
StrideShape,
DilationShape>::Kernel;
using Direct2dConv = cutlass::conv::device::DirectConvolution<DepthwiseDirect2dConv>;
/////////////////////////////////////////////////////////////////////////////////////////////////
// Command line options parsing
struct Options {
bool help;
cutlass::Tensor4DCoord input_size;
cutlass::Tensor4DCoord filter_size;
cutlass::Tensor4DCoord padding;
cutlass::MatrixCoord conv_stride;
cutlass::MatrixCoord dilation;
int groups;
int splitk;
bool reference_check;
bool measure_performance;
int iterations;
bool save_workspace;
ElementComputeEpilogue alpha;
ElementComputeEpilogue beta;
std::string tag;
Options()
: help(false),
input_size(1, 128, 128, 32),
filter_size(32, 3, 3, 1),
groups(32),
padding(1, 1, 1, 1),
conv_stride(1, 1),
dilation(1, 1),
reference_check(false),
measure_performance(true),
iterations(20),
save_workspace(false),
alpha(1),
beta(0),
splitk(1) {}
// Verify the problem size is compatible with the CUTLASS Convolution implementation.
bool valid() {
//
// CUTLASS attempts to load 128b vectors of cutlass::half_t (F16) elements. Consequently,
// all pointers, strides, and tensor extents must be divisible by 8 elements.
//
int const kAlignment = 8;
if ((input_size.c() % kAlignment) || (filter_size.n() % kAlignment)) {
// misaligned tensors
return false;
}
// depthwise conv
if (groups != input_size.c()) {
return false;
}
if (filter_size.n() != groups) {
return false;
}
// Invalid padding
if ((padding.h() != filter_size.h() / 2) || (padding.w() != filter_size.w() / 2)) {
return false;
}
// Filter size passed through command line does not match filter size template parameter
if (filter_size.h() != FilterShape::kRow || filter_size.w() != FilterShape::kColumn) {
std::cerr << "Filter size passed in (" << filter_size.h() << "x" << filter_size.w() << ") "
<< "must match the FilterShape template parameter of the convolution "
<< "(" << FilterShape::kRow << "x" << FilterShape::kColumn << "). "
<< "To use the filter shape passed in, change the FilterShape template "
<< "parameter and recompile this example."
<< std::endl;
return false;
}
return true;
}
/// Updates input and filter sizes
void update(cutlass::Tensor4DCoord input_size, cutlass::Tensor4DCoord filter_size) {
this->input_size = input_size;
this->filter_size = filter_size;
padding.n() = filter_size.h() / 2;
padding.h() = filter_size.h() / 2;
padding.w() = filter_size.w() / 2;
padding.c() = filter_size.w() / 2;
}
// Parses the command line
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);
if (cmd.check_cmd_line_flag("help")) {
help = true;
}
if (cmd.check_cmd_line_flag("ref-check")) {
reference_check = true;
}
if (cmd.check_cmd_line_flag("perf-check")) {
measure_performance = true;
}
if (cmd.check_cmd_line_flag("save-workspace")) {
save_workspace = true;
}
cmd.get_cmd_line_argument("n", input_size.n());
cmd.get_cmd_line_argument("h", input_size.h());
cmd.get_cmd_line_argument("w", input_size.w());
cmd.get_cmd_line_argument("c", input_size.c());
cmd.get_cmd_line_argument("k", filter_size.n());
cmd.get_cmd_line_argument("r", filter_size.h());
cmd.get_cmd_line_argument("s", filter_size.w());
cmd.get_cmd_line_argument("g", groups);
filter_size.c() = 1;
filter_size.n() = input_size.c();
cmd.get_cmd_line_argument("alpha", alpha);
cmd.get_cmd_line_argument("beta", beta);
cmd.get_cmd_line_argument("splitk", splitk);
cmd.get_cmd_line_argument("iterations", iterations);
cmd.get_cmd_line_argument("tag", tag);
int32_t padding_h = filter_size.h() / 2;
int32_t padding_w = filter_size.w() / 2;
padding = {padding_h, padding_h, padding_w, padding_w};
}
/// Prints the usage statement.
std::ostream &print_usage(std::ostream &out) const {
out << "46_depthwise_gemm_fprop example\n\n"
<< " This example uses Ampere's Tensor Core operators on F16 data types to compute\n"
<< " forward convolution on tensors of layout NHWC.\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement.\n\n"
<< " --n=<int> Input tensor extent N\n"
<< " --h=<int> Input tensor extent H\n"
<< " --w=<int> Input tensor extent W\n"
<< " --c=<int> Input tensor extent C\n"
<< " --k=<int> Filter extent K\n"
<< " --r=<int> Filter extent R\n"
<< " --s=<int> Filter extent S\n\n"
<< " --g=<int> Groups\n\n"
<< " --alpha=<float> Epilogue scalar alpha\n"
<< " --beta=<float> Epilogue scalar beta\n\n"
<< " --splitk=<int> Enable splitK\n\n"
<< " --ref-check If set (true), reference check on the host is computed\n"
<< " --perf-check If set (true), performance is measured.\n"
<< " --iterations=<int> Number of profiling iterations to perform.\n"
<< " --save-workspace If set, workspace is written to a text file.\n"
<< " --tag=<string> String to replicate across the first column in the results "
"table\n";
out << "\n\nExamples:\n\n"
<< "$ ./examples/46_depthwise_simt_conv2dfprop/46_depthwise_simt_conv2dfprop --n=32 "
"--h=224 --w=224 --c=128 --k=128 --g=128 --r=3 --s=3\n\n"
<< "$ ./examples/46_depthwise_simt_conv2dfprop/46_depthwise_simt_conv2dfprop --n=1 "
"--h=224 --w=224 --c=32 --k=32 --g=32 --r=3 --s=3 --splitk=10 --ref-check\n\n";
return out;
}
/// Computes the output tensor size (NPQK)
cutlass::Tensor4DCoord output_size() const {
return cutlass::Tensor4DCoord(
input_size.n(),
(input_size.h() + padding.n() + padding.h() - filter_size.h()) / conv_stride.row() + 1,
(input_size.w() + padding.w() + padding.c() - filter_size.w()) / conv_stride.column() + 1,
filter_size.n());
}
/// Compute performance in GFLOP/s
double gflops(double runtime_s) const {
// Number of multiply-adds = NPQK * CRS
int64_t fmas =
output_size().product() * int64_t(filter_size.h() * filter_size.w() * filter_size.c());
// Two flops per multiply-add
return 2.0 * double(fmas) / double(1.0e9) / runtime_s;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
struct Result {
double runtime_ms;
double gflops;
cutlass::Status status;
cutlass::Status reference_check;
cudaError_t error;
Result()
: runtime_ms(0),
gflops(0),
status(cutlass::Status::kSuccess),
reference_check(cutlass::Status::kInvalid),
error(cudaSuccess) {}
static std::ostream &print_header(std::ostream &out, Options const &options) {
if (!options.tag.empty()) {
out << "Name,";
}
out << "Layer,N,H,W,C,K,R,S,G,stride_h,stride_w,dilation_h,dilation_w,splitK,Runtime,GFLOPs";
return out;
}
std::ostream &print(std::ostream &out, int idx, Options const &options) {
if (!options.tag.empty()) {
out << options.tag << ",";
}
cutlass::Tensor4DCoord output_size = options.output_size();
out << "conv_" << idx << "," << options.input_size.n() << "," << options.input_size.h() << ","
<< options.input_size.w() << "," << options.input_size.c() << ","
<< options.filter_size.n() << "," << options.filter_size.h() << ","
<< options.filter_size.w() << ","
<< options.groups << "," << options.conv_stride.row() << "," << options.conv_stride.column()
<< ","
<< options.dilation.row() << "," << options.dilation.column() << ","
<< options.splitk << ","
<< runtime_ms << "," << gflops;
return out;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Runs one testcase
Result profile_convolution(Options const &options) {
Result result;
//
// Allocate host-device tensors using the CUTLASS Utilities.
//
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(options.input_size);
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(options.filter_size);
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b_transpose(options.filter_size);
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c(options.output_size());
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_d(options.output_size());
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_ref_d(options.output_size());
//
// Initialize tensors
//
// Fill tensor A on host with uniform-distribution random data
cutlass::reference::host::TensorFillRandomUniform(
tensor_a.host_view(), 1, ElementInputA(5), ElementInputA(-6), 0);
// Fill tensor B on host with uniform-distribution random data
cutlass::reference::host::TensorFillRandomUniform(
tensor_b.host_view(), 1, ElementInputB(3), ElementInputB(-6), 0);
// Fill tensor C on host with uniform-distribution random data
cutlass::reference::host::TensorFillRandomUniform(
tensor_c.host_view(), 1, ElementOutput(5), ElementOutput(-6), 0);
// Fill tensor D on host with zeros
cutlass::reference::host::TensorFill(tensor_d.host_view());
// Fill tensor D for reference on host with zeros
cutlass::reference::host::TensorFill(tensor_ref_d.host_view());
// Copy data from host to GPU
tensor_a.sync_device();
tensor_b.sync_device();
tensor_b_transpose.sync_device();
tensor_c.sync_device();
tensor_d.sync_device();
tensor_ref_d.sync_device();
//
// Define arguments for CUTLASS Convolution
//
cutlass::conv::Mode mode = cutlass::conv::Mode::kCrossCorrelation;
// Split P*Q into multiple CTA
int split_k_slices = options.splitk;
// Construct Conv2dProblemSize with user defined output size
cutlass::conv::Conv2dProblemSize problem_size(options.input_size,
options.filter_size,
options.padding,
options.conv_stride,
options.dilation,
options.output_size(),
mode,
split_k_slices,
options.groups);
// Construct Direc2dConv::Argument structure with conv2d
// problem size, data pointers, and epilogue values
typename Direct2dConv::Arguments arguments{problem_size,
tensor_a.device_ref(),
tensor_b.device_ref(),
tensor_c.device_ref(),
tensor_d.device_ref(),
{options.alpha, options.beta},
tensor_b_transpose.device_ref()};
//
// Initialize CUTLASS Convolution
//
Direct2dConv implicit_gemm_op;
size_t workspace_size = implicit_gemm_op.get_workspace_size(arguments);
// Allocate workspace memory
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
result.status = implicit_gemm_op.can_implement(arguments);
CUTLASS_CHECK(result.status);
result.status = implicit_gemm_op.initialize(arguments, workspace.get());
CUTLASS_CHECK(result.status);
//
// Launch initialized CUTLASS kernel
//
result.status = implicit_gemm_op();
CUTLASS_CHECK(result.status);
//
// Optional reference check
//
if (options.reference_check) {
std::cout << "Verification on host...\n";
// Compute with reference implementation
cutlass::reference::host::Conv2dFprop<
ElementInputA,
LayoutInputA,
ElementInputB,
LayoutInputB,
ElementOutput,
LayoutOutput,
ElementComputeEpilogue,
ElementAccumulator >(problem_size,
tensor_a.host_ref(),
tensor_b.host_ref(),
tensor_c.host_ref(),
tensor_ref_d.host_ref(),
options.alpha,
options.beta);
// Check if output from CUTLASS kernel and reference kernel are equal or not
tensor_d.sync_host();
bool passed =
cutlass::reference::host::TensorEquals(tensor_d.host_view(), tensor_ref_d.host_view());
if (!passed) {
result.reference_check = cutlass::Status::kErrorInternal;
std::cout << "ERROR - results miscompared.\n";
} else {
result.reference_check = cutlass::Status::kSuccess;
std::cout << "Passed.\n";
}
} else {
result.reference_check = cutlass::Status::kInvalid;
}
if (options.save_workspace) {
std::stringstream ss;
ss << "46_depthwise_simt_conv2dfprop" << options.input_size.n() << "x" << options.input_size.h()
<< "x" << options.input_size.w() << "x" << options.input_size.c() << "_"
<< options.filter_size.n() << "x" << options.filter_size.h() << "x"
<< options.filter_size.w() << "x" << options.filter_size.c() << ".dat";
std::ofstream output_workspace(ss.str());
output_workspace << "Input = \n"
<< tensor_a.host_view() << "\n\n"
<< "Filters = \n"
<< tensor_b.host_view() << "\n\n";
if (options.reference_check) {
output_workspace << "Reference = \n" << tensor_ref_d.host_view() << "\n\n";
}
output_workspace << "Computed = \n" << tensor_d.host_view() << std::endl;
std::cout << "Results written to '" << ss.str() << "'." << std::endl;
}
//
// Performance measurement
//
if (options.measure_performance) {
cudaEvent_t events[2];
for (auto &event : events) {
result.error = cudaEventCreate(&event);
if (result.error != cudaSuccess) {
std::cerr << "cudaEventCreate() failed: " << cudaGetErrorString(result.error) << std::endl;
return result;
}
}
// Record an event at the start of a series of convolution operations.
result.error = cudaEventRecord(events[0]);
if (result.error != cudaSuccess) {
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
return result;
}
// Launch a sequence of implicit GEMM operations on the device
for (int iteration = 0; iteration < options.iterations; ++iteration) {
result.status = implicit_gemm_op();
CUTLASS_CHECK(result.status);
}
// Record an event when the convolutions have been launched.
result.error = cudaEventRecord(events[1]);
if (result.error != cudaSuccess) {
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
return result;
}
// Wait for work on the device to complete.
result.error = cudaEventSynchronize(events[1]);
if (result.error != cudaSuccess) {
std::cerr << "cudaEventSynchronize() failed: " << cudaGetErrorString(result.error)
<< std::endl;
return result;
}
// Measure elapsed runtime
float runtime_ms = 0;
result.error = cudaEventElapsedTime(&runtime_ms, events[0], events[1]);
if (result.error != cudaSuccess) {
std::cerr << "cudaEventElapsed() failed: " << cudaGetErrorString(result.error) << std::endl;
return result;
}
// Print average runtime and GFLOPs.
result.runtime_ms = double(runtime_ms) / double(options.iterations);
result.gflops = options.gflops(result.runtime_ms / 1000.0);
// Cleanup
for (auto event : events) {
(void)cudaEventDestroy(event);
}
}
return result;
}
/////////////////////////////////////////////////////////////////////////////////////////////////
int main(int argc, char const **args) {
bool notSupported = false;
cudaDeviceProp props;
CUDA_CHECK(cudaGetDeviceProperties(&props, 0));
if (!(props.major >= 6)) {
std::cerr << "Run on a machine with compute capability at least 60." << std::endl;
notSupported = true;
}
if (notSupported) {
return 0;
}
Options options;
options.parse(argc, args);
if (options.help) {
options.print_usage(std::cout) << std::endl;
return 0;
}
// Execute one problem size
if (!options.valid()) {
std::cerr << "Invalid problem." << std::endl;
return -1;
}
Result result = profile_convolution(options);
Result::print_header(std::cout, options) << std::endl;
result.print(std::cout, 1, options) << std::endl;
return 0;
}
/////////////////////////////////////////////////////////////////////////////////////////////////