diff --git a/README.md b/README.md index 918bc72..9f748c7 100644 --- a/README.md +++ b/README.md @@ -70,14 +70,14 @@ for implementation details. sudo pip install tensorflow-1.5.0rc0-cp27-cp27mu-linux_aarch64.whl 4. Install uff exporter on Jetson TX2. - 1. Download TensorRT 3.0.4 for Ubuntu 16.04 and CUDA 9.0 tar package from https://developer.nvidia.com/nvidia-tensorrt-download. + 1. Download TensorRT 5.0.2 for Ubuntu 16.04 and CUDA 9.0 tar package from https://developer.nvidia.com/nvidia-tensorrt-download. 2. Extract archive - tar -xzf TensorRT-3.0.4.Ubuntu-16.04.3.x86_64.cuda-9.0.cudnn7.0.tar.gz + tar -xzf TensorRT-5.0.2.6.Ubuntu-16.04.4.x86_64-gnu.cuda-9.0.cudnn7.3.tar.gz 3. Install uff python package using pip - sudo pip install TensorRT-3.0.4/uff/uff-0.2.0-py2.py3-none-any.whl + sudo pip install TensorRT-5.0.2.6/uff/uff-0.5.5-py2.py3-none-any.whl 5. Clone and build this project diff --git a/src/uff_to_plan.cpp b/src/uff_to_plan.cpp index ab2b395..fe7bf6c 100644 --- a/src/uff_to_plan.cpp +++ b/src/uff_to_plan.cpp @@ -68,7 +68,7 @@ int main(int argc, char *argv[]) IBuilder *builder = createInferBuilder(gLogger); INetworkDefinition *network = builder->createNetwork(); IUffParser *parser = createUffParser(); - parser->registerInput(inputName.c_str(), DimsCHW(3, inputHeight, inputWidth)); + parser->registerInput(inputName.c_str(), DimsCHW(3, inputHeight, inputWidth), UffInputOrder::kNCHW); parser->registerOutput(outputName.c_str()); if (!parser->parse(uffFilename.c_str(), *network, dataType)) {