-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtrain.py
126 lines (91 loc) · 3.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
import os
import argparse
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from models import MODELS
parser = argparse.ArgumentParser()
parser.add_argument('model_name', type=str, help='The name of the model. See the MODELS dictionary in models.py for options.')
parser.add_argument('--batch_size', type=int, default=64, help='The data loader batch size.')
parser.add_argument('--lr', type=float, default=1e-3, help='The optimizer learning rate.')
parser.add_argument('--optimizer', type=str, default='adam', help='The optimizer type. Must be one of the keys in the OPTIMIZERS variable in train.py.')
parser.add_argument('--momentum', type=float, default=0.9, help='The optimizier momentum. Only applies when optimizer=sgd.')
parser.add_argument('--epochs', type=int, default=50, help='The number of training epochs.')
parser.add_argument('--dataset_path', type=str, default='data/cifar10', help='The directory to store generated models and logs.')
parser.add_argument('--checkpoint_path', type=str, default=None, help='The path to store the model weights.')
args = parser.parse_args()
OPTIMIZERS = {
'sgd': lambda params, args: torch.optim.SGD(params, lr=args.lr, momentum=args.momentum),
'adam': lambda params, args: torch.optim.Adam(params, lr=args.lr)
}
model = MODELS[args.model_name]().cuda()
optimizer = OPTIMIZERS[args.optimizer](model.parameters(), args)
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_dataset = torchvision.datasets.CIFAR10(
root=args.dataset_path,
train=True,
download=True,
transform=transform_train
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True
)
test_dataset = torchvision.datasets.CIFAR10(
root=args.dataset_path,
train=False,
download=True,
transform=transform_test
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.batch_size,
shuffle=False
)
best_accuracy = 0.0
for epoch in range(args.epochs):
train_loss = 0.0
test_loss = 0.0
train_accuracy = 0
test_accuracy = 0
# train loop
model = model.train()
for image, label in iter(train_loader):
optimizer.zero_grad()
image = image.cuda()
label = label.cuda()
output = model(image)
loss = F.cross_entropy(output, label)
loss.backward()
optimizer.step()
train_loss += float(loss)
train_accuracy += int(torch.sum(output.argmax(dim=-1) == label))
train_accuracy /= len(train_dataset)
train_loss /= len(train_loader)
model = model.eval()
for image, label in iter(test_loader):
image = image.cuda()
label = label.cuda()
output = model(image)
loss = F.cross_entropy(output, label)
test_loss += float(loss)
test_accuracy += int(torch.sum(output.argmax(dim=-1) == label))
test_accuracy /= len(test_dataset)
test_loss /= len(test_loader)
print(f'{epoch}, {train_loss}, {test_loss}, {train_accuracy}, {test_accuracy}')
if test_accuracy > best_accuracy and args.checkpoint_path is not None:
print(f'Saving checkpoint to {args.checkpoint_path} for model with test accuracy {test_accuracy}.')
torch.save(model.state_dict(), args.checkpoint_path)