This repository has been archived by the owner on Dec 7, 2022. It is now read-only.
generated from ortec/euro-neurips-vrp-2022-quickstart
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathenvironment.py
320 lines (265 loc) · 15.3 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import time
import tools
import warnings
from typing import Dict, List, Tuple
import numpy as np
_BIG_NUMBER = int(1e9)
State = Dict[str, np.ndarray]
Action = List[List[int]]
Info = Dict[str, str]
class Environment:
def step(self, solution: Action) -> Tuple[State, int, bool, Info]:
raise NotImplementedError()
def reset(self, seed: int = None, instance: State = None, epoch_tlim: int = None, is_static: bool = None) -> State:
raise NotImplementedError()
class ControllerEnvironment(Environment):
"""
Environment for VRP with Time Windows that wraps interface with controller through the command line
"""
def __init__(self, read_pipe, write_pipe):
super().__init__()
self.read_pipe = read_pipe
self.write_pipe = write_pipe
def step(self, solution: Action) -> Tuple[State, int, bool, Info]:
result = tools.json_loads_np(self._request('step', solution))
observation = result['observation']
reward = result['reward']
done = result['done']
info = result['info']
return (observation, reward, done, info)
def reset(self, seed: int = None, instance: State = None, epoch_tlim: int = None, is_static: bool = None) -> (State):
assert seed is None, "Argument seed must be None for controller environment as it is decided by controller"
assert instance is None, "Argument instance must be None for controller environment as it is decided by controller"
assert epoch_tlim is None, "Argument epoch_tlim must be None for controller environment as it is decided by controller"
assert is_static is None, "Argument is_static must be None for controller environment as it is decided by controller"
result = tools.json_loads_np(self._request('reset', None))
return result['observation'], result['info']
def _request(self, action: str, data=None):
self.write_pipe.write(tools.json_dumps_np({
'action': action,
'data': data
}))
self.write_pipe.write('\n')
self.write_pipe.flush()
return self.read_pipe.readline().strip()
class VRPEnvironment(Environment):
"""
Dynamic environment for VRP with Time Windows (VRPTW) where orders arrive during the day
An instance is created by resampling customers, time windows and demands from a static VRPTW instance.
Requests arrive during a number of epochs. At every epoch, a solution can be submitted that dispatches
a number of vehicles to serve a subset of the open requests. Some requests must be served during the
current epoch, because the next epoch will be too late to meet there time windows, taking into account
dispatching time and driving time. Other requests may be served, and may be included in the routes, but
may also be deferred to the next epoch. During the final epoch, all request must be dispatched.
The environment has a wall clock time limit to submit solutions. To avoid timing issues, submissions can
be 'submitted' to the environment early, after which they can still be updated until the time limit.
A submitted solution is checked and can be accepted or rejected depending on whether it is valid or not.
To move to the next epoch, the agent should explicitly call the 'next_epoch' function, after which the
last accepted solution becomes final, and new requests are sampled for the next epoch.
"""
def __init__(self, seed: int = 1, instance: State = None, epoch_tlim: int = 120, is_static: bool = False):
super().__init__()
# DO NOT CHANGE THESE PARAMETERS
self.MAX_REQUESTS_PER_EPOCH = 100 # Every epoch, we will sample at most 100 new requests
self.MARGIN_DISPATCH = 3600 # Assume it takes one hour to dispatch the vehicle
self.EPOCH_DURATION = 3600 # We will dispatch vehicles once an hour
self.TLIM_GRACE_PERIOD = 2 # 2 seconds wall clock grace time
# Fill environment with defaults
self.default_instance = instance
self.default_seed = seed
self.default_epoch_tlim = epoch_tlim
self.default_is_static = is_static
# Require reset to be called first by marking environment as done
self.is_done = True
self.reset_counter = 0
def reset(self, seed: int = None, instance: State = None, epoch_tlim: int = None, is_static: bool = None) -> State:
"""Resets the environment. Defaults provided during construction can be overridden to reuse the environment."""
if self.reset_counter > 0 and seed is None:
warnings.warn("Repeatedly resetting the environment without providing a seed will use the same default seed again")
self.reset_counter += 1
self.instance = instance if instance is not None else self.default_instance
self.seed = seed if seed is not None else self.default_seed
self.epoch_tlim = epoch_tlim if epoch_tlim is not None else self.default_epoch_tlim
self.is_static = is_static if is_static is not None else self.default_is_static
assert self.instance is not None
if self.is_static:
self.start_epoch = 0
self.current_epoch = 0
self.end_epoch = 0
else:
self.rng = np.random.default_rng(self.seed)
timewi = self.instance['time_windows']
self.start_epoch = int(max((timewi[1:, 0].min() - self.MARGIN_DISPATCH) // self.EPOCH_DURATION, 0))
self.end_epoch = int(max((timewi[1:, 0].max() - self.MARGIN_DISPATCH) // self.EPOCH_DURATION, 0))
self.current_epoch = self.start_epoch
# Initialize request array with dummy/padding/sentinel request for depot
self.request_id = np.array([0])
self.request_customer_index = np.array([0])
self.request_timewi = self.instance['time_windows'][0:1]
self.request_service_t = self.instance['service_times'][0:1]
self.request_demand = self.instance['demands'][0:1]
self.request_is_dispatched = np.array([False])
self.request_epoch = np.array([0])
self.request_must_dispatch = np.array([False])
self.is_done = False
obs = self._next_observation()
self.final_solutions = {}
self.final_costs = {}
self.start_time_epoch = time.time()
info = {
# For the dynamic problem, requests will be sampled from the static instance
'dynamic_context': self.instance if not self.is_static else None,
'is_static': self.is_static,
'start_epoch': self.start_epoch,
'end_epoch': self.end_epoch,
'num_epochs': self.end_epoch - self.start_epoch + 1,
'epoch_tlim': self.epoch_tlim,
}
return obs, info
def step(self, solution: Action) -> Tuple[State, int, bool, Info]:
assert not self.is_done, "Environment is finished"
# Check time limit
if self.get_elapsed_time_epoch() > self.epoch_tlim + self.TLIM_GRACE_PERIOD:
return self._fail_episode("Time exceeded")
# Check if solution is valid
try:
driving_duration = tools.validate_dynamic_epoch_solution(self.epoch_instance, solution)
except AssertionError as e:
return self._fail_episode(e)
if not self.is_static:
# Mark orders of current solution as dispatched
for route in solution:
# Route consists of 1 indexed requests
assert not self.request_is_dispatched[route].any()
self.request_is_dispatched[route] = True
# We must not have any undispatched orders that must be dispatched
assert not (self.request_must_dispatch & ~self.request_is_dispatched).any()
self.final_solutions[self.current_epoch] = solution
self.final_costs[self.current_epoch] = driving_duration
self.current_epoch += 1
self.is_done = self.current_epoch > self.end_epoch
observation = self._next_observation() if not self.is_done else None
reward = -driving_duration
self.start_time_epoch = time.time()
return (observation, reward, self.is_done, {'error': None})
def get_elapsed_time_epoch(self):
assert self.start_time_epoch is not None
return time.time() - self.start_time_epoch
def _fail_episode(self, error):
self.final_solutions[self.current_epoch] = None
self.final_costs[self.current_epoch] = max(self.end_epoch - self.current_epoch, 1) * _BIG_NUMBER
self.is_done = True
return (None, -_BIG_NUMBER, self.is_done, {'error': str(error)})
def _next_observation(self):
assert not self.is_done
assert self.start_epoch <= self.current_epoch <= self.end_epoch
if self.is_static:
# Static instance, don't resample requests
self.epoch_instance = {
'is_depot': self.instance['is_depot'],
'customer_idx': np.arange(len(self.instance['coords'])),
'request_idx': np.arange(len(self.instance['coords'])),
'coords': self.instance['coords'],
'demands': self.instance['demands'],
'capacity': self.instance['capacity'],
'time_windows': self.instance['time_windows'],
'service_times': self.instance['service_times'],
'duration_matrix': self.instance['duration_matrix'],
'must_dispatch': ~self.instance['is_depot'],
}
return {
'current_epoch': self.current_epoch,
'current_time': 0,
'planning_starttime': 0,
'epoch_instance': self.epoch_instance
}
duration_matrix = self.instance['duration_matrix']
# Sample new data
current_time = self.EPOCH_DURATION * self.current_epoch
planning_starttime = current_time + self.MARGIN_DISPATCH
# Sample uniformly
num_customers = len(self.instance['coords']) - 1 # Exclude depot
# Sample data uniformly from customers (1 to num_customers)
def sample_from_customers(k=self.MAX_REQUESTS_PER_EPOCH):
return self.rng.integers(num_customers, size=k) + 1
cust_idx = sample_from_customers()
timewi_idx = sample_from_customers()
demand_idx = sample_from_customers()
service_t_idx = sample_from_customers()
new_request_timewi = self.instance['time_windows'][timewi_idx]
# Filter data that can no longer be delivered
# Time + margin for dispatch + drive time from depot should not exceed latest arrival
earliest_arrival = np.maximum(planning_starttime + duration_matrix[0, cust_idx], new_request_timewi[:, 0])
# Also, return at depot in time must be feasible
earliest_return_at_depot = earliest_arrival + self.instance['service_times'][service_t_idx] + duration_matrix[cust_idx, 0]
is_feasible = (earliest_arrival <= new_request_timewi[:, 1]) & (earliest_return_at_depot <= self.instance['time_windows'][0, 1])
if is_feasible.any():
num_new_requests = is_feasible.sum()
self.request_id = np.concatenate((self.request_id, np.arange(num_new_requests) + len(self.request_id)))
self.request_customer_index = np.concatenate((self.request_customer_index, cust_idx[is_feasible]))
self.request_timewi = np.concatenate((self.request_timewi, new_request_timewi[is_feasible]))
self.request_service_t = np.concatenate((self.request_service_t, self.instance['service_times'][service_t_idx[is_feasible]]))
self.request_demand = np.concatenate((self.request_demand, self.instance['demands'][demand_idx[is_feasible]]))
self.request_is_dispatched = np.pad(self.request_is_dispatched, (0, num_new_requests), mode='constant')
self.request_epoch = np.concatenate((self.request_epoch, np.full(num_new_requests, self.current_epoch)))
# Customers must dispatch this epoch if next epoch they will be too late
if self.current_epoch < self.end_epoch:
earliest_arrival = np.maximum(
planning_starttime + self.EPOCH_DURATION + duration_matrix[0, self.request_customer_index],
self.request_timewi[:, 0]
)
earliest_return_at_depot = earliest_arrival + self.request_service_t + duration_matrix[self.request_customer_index, 0]
self.request_must_dispatch = (
(earliest_arrival > self.request_timewi[:, 1]) |
(earliest_return_at_depot > self.instance['time_windows'][0, 1])
)
else:
self.request_must_dispatch = self.request_id > 0
# Return instance based on customers not yet dispatched
idx_undispatched = self.request_id[~self.request_is_dispatched]
customer_idx = self.request_customer_index[idx_undispatched]
# Return a VRPTW instance with undispatched requests with two additional properties: customer_idx and request_idx
time_windows = self.request_timewi[idx_undispatched]
# Renormalize time to start at planning_starttime, and clip time windows in the past (so depot will start at 0)
time_windows = np.clip(time_windows - planning_starttime, a_min=0, a_max=None)
self.epoch_instance = {
'is_depot': self.instance['is_depot'][customer_idx],
'customer_idx': customer_idx,
'request_idx': idx_undispatched,
'coords': self.instance['coords'][customer_idx],
'demands': self.request_demand[idx_undispatched],
'capacity': self.instance['capacity'],
'time_windows': time_windows,
'service_times': self.request_service_t[idx_undispatched],
'duration_matrix': self.instance['duration_matrix'][np.ix_(customer_idx, customer_idx)],
'must_dispatch': self.request_must_dispatch[idx_undispatched],
}
return {
'current_epoch': self.current_epoch,
'current_time': current_time,
'planning_starttime': planning_starttime,
'epoch_instance': self.epoch_instance
}
def get_hindsight_problem(self):
"""After the episode is completed, this function can be used to obtain the 'hindsight problem',
i.e. as if we had future information about all the requests.
This includes additional info containing the release times of the requests."""
assert self.is_done
customer_idx = self.request_customer_index
# Release times indicate that a route containing this request cannot dispatch before this time
# This needs to include the margin time for the dispatch
release_times = self.EPOCH_DURATION * self.request_epoch + self.MARGIN_DISPATCH
release_times[self.instance['is_depot'][customer_idx]] = 0
return {
'is_depot': self.instance['is_depot'][customer_idx],
'customer_idx': customer_idx,
'request_idx': self.request_id,
'coords': self.instance['coords'][customer_idx],
'demands': self.request_demand,
'capacity': self.instance['capacity'],
'time_windows': self.request_timewi,
'service_times': self.request_service_t,
'duration_matrix': self.instance['duration_matrix'][np.ix_(customer_idx, customer_idx)],
# 'must_dispatch': self.request_must_dispatch,
'release_times': release_times
}