This repository has been archived by the owner on Dec 7, 2022. It is now read-only.
generated from ortec/euro-neurips-vrp-2022-quickstart
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbenchmark.py
131 lines (100 loc) · 3.23 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import argparse
from functools import partial
from glob import glob
from pathlib import Path
from time import perf_counter
import numpy as np
from tqdm.contrib.concurrent import process_map
import hgspy
import tools
from strategies.static import hgs
from strategies.config import Config
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--num_procs", type=int, default=4)
parser.add_argument("--config_loc", default="configs/benchmark.toml")
parser.add_argument(
"--instance_pattern", default="instances/ORTEC-VRPTW-ASYM-*.txt"
)
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("--max_runtime", type=float)
group.add_argument("--max_iterations", type=int)
group.add_argument("--phase", choices=["quali", "final"])
return parser.parse_args()
def solve(
loc: str,
seed: int,
config_loc: str,
max_runtime,
max_iterations,
phase,
**kwargs,
):
path = Path(loc)
instance = tools.read_vrplib(path)
start = perf_counter()
if phase is not None:
t_lim = tools.static_time_limit(tools.name2size(loc), phase)
stop = hgspy.stop.MaxRuntime(t_lim)
elif max_runtime is not None:
stop = hgspy.stop.MaxRuntime(max_runtime)
else:
stop = hgspy.stop.MaxIterations(max_iterations)
static_config = Config.from_file(config_loc).static()
res = hgs(
instance,
hgspy.Config(seed=seed, **static_config.solver_params()),
static_config.node_ops(),
static_config.route_ops(),
static_config.crossover_ops(),
stop,
)
best = res.get_best_found()
routes = [route for route in best.get_routes() if route]
cost = best.cost()
try:
actual_cost = tools.validate_static_solution(instance, routes)
is_ok = "Y"
assert np.isclose(actual_cost, cost), "Could not validate objective."
except AssertionError:
is_ok = "N"
return (
path.stem,
is_ok,
int(cost),
res.get_iterations(),
round(perf_counter() - start, 3),
)
def main():
args = parse_args()
func = partial(solve, **vars(args))
func_args = sorted(glob(args.instance_pattern), key=tools.name2size)
tqdm_kwargs = dict(max_workers=args.num_procs, unit="instance")
data = process_map(func, func_args, **tqdm_kwargs)
dtypes = [
("inst", "U37"),
("ok", "U1"),
("obj", int),
("iters", int),
("time", float),
]
data = np.asarray(data, dtype=dtypes)
headers = [
"Instance",
"OK",
"Objective",
"Iters. (#)",
"Time (s)",
]
table = tools.tabulate(headers, data)
print("\n", table, "\n", sep="")
obj_all = data["obj"]
obj_feas = data[data["ok"] == "Y"]["obj"]
print(f" Avg. objective: {obj_all.mean():.0f}", end=" ")
print(f"(w/o infeas: {obj_feas.mean():.0f})" if obj_feas.size > 0 else "")
print(f" Avg. iterations: {data['iters'].mean():.0f}")
print(f" Avg. run-time (s): {data['time'].mean():.2f}")
print(f" Total not OK: {np.count_nonzero(data['ok'] == 'N')}")
if __name__ == "__main__":
main()