-
Notifications
You must be signed in to change notification settings - Fork 257
/
Copy pathapp.py
263 lines (232 loc) · 8.79 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
import random
from datetime import datetime
import gradio as gr
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames, save_videos_grid
class AnimateController:
def __init__(
self,
config_path="./configs/prompts/animation.yaml",
weight_dtype=torch.float16,
):
# Read pretrained weights path from config
self.config = OmegaConf.load(config_path)
self.pipeline = None
self.weight_dtype = weight_dtype
def animate(
self,
ref_image,
pose_video_path,
width=512,
height=768,
length=24,
num_inference_steps=25,
cfg=3.5,
seed=123,
):
generator = torch.manual_seed(seed)
if isinstance(ref_image, np.ndarray):
ref_image = Image.fromarray(ref_image)
if self.pipeline is None:
vae = AutoencoderKL.from_pretrained(
self.config.pretrained_vae_path,
).to("cuda", dtype=self.weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained(
self.config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=self.weight_dtype, device="cuda")
inference_config_path = self.config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
self.config.pretrained_base_model_path,
self.config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=self.weight_dtype, device="cuda")
pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to(
dtype=self.weight_dtype, device="cuda"
)
image_enc = CLIPVisionModelWithProjection.from_pretrained(
self.config.image_encoder_path
).to(dtype=self.weight_dtype, device="cuda")
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
# load pretrained weights
denoising_unet.load_state_dict(
torch.load(self.config.denoising_unet_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(self.config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
torch.load(self.config.pose_guider_path, map_location="cpu"),
)
pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
pipe = pipe.to("cuda", dtype=self.weight_dtype)
self.pipeline = pipe
pose_images = read_frames(pose_video_path)
src_fps = get_fps(pose_video_path)
pose_list = []
pose_tensor_list = []
pose_transform = transforms.Compose(
[transforms.Resize((height, width)), transforms.ToTensor()]
)
for pose_image_pil in pose_images[:length]:
pose_list.append(pose_image_pil)
pose_tensor_list.append(pose_transform(pose_image_pil))
video = self.pipeline(
ref_image,
pose_list,
width=width,
height=height,
video_length=length,
num_inference_steps=num_inference_steps,
guidance_scale=cfg,
generator=generator,
).videos
ref_image_tensor = pose_transform(ref_image) # (c, h, w)
ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) # (1, c, 1, h, w)
ref_image_tensor = repeat(
ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=length
)
pose_tensor = torch.stack(pose_tensor_list, dim=0) # (f, c, h, w)
pose_tensor = pose_tensor.transpose(0, 1)
pose_tensor = pose_tensor.unsqueeze(0)
video = torch.cat([ref_image_tensor, pose_tensor, video], dim=0)
save_dir = f"./output/gradio"
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
out_path = os.path.join(save_dir, f"{date_str}T{time_str}.mp4")
save_videos_grid(
video,
out_path,
n_rows=3,
fps=src_fps,
)
torch.cuda.empty_cache()
return out_path
controller = AnimateController()
def ui():
with gr.Blocks() as demo:
gr.Markdown(
"""
# Moore-AnimateAnyone Demo
"""
)
animation = gr.Video(
format="mp4",
label="Animation Results",
height=448,
autoplay=True,
)
with gr.Row():
reference_image = gr.Image(label="Reference Image")
motion_sequence = gr.Video(
format="mp4", label="Motion Sequence", height=512
)
with gr.Column():
width_slider = gr.Slider(
label="Width", minimum=448, maximum=768, value=512, step=64
)
height_slider = gr.Slider(
label="Height", minimum=512, maximum=1024, value=768, step=64
)
length_slider = gr.Slider(
label="Video Length", minimum=24, maximum=128, value=24, step=24
)
with gr.Row():
seed_textbox = gr.Textbox(label="Seed", value=-1)
seed_button = gr.Button(
value="\U0001F3B2", elem_classes="toolbutton"
)
seed_button.click(
fn=lambda: gr.Textbox.update(value=random.randint(1, 1e8)),
inputs=[],
outputs=[seed_textbox],
)
with gr.Row():
sampling_steps = gr.Slider(
label="Sampling steps",
value=25,
info="default: 25",
step=5,
maximum=30,
minimum=10,
)
guidance_scale = gr.Slider(
label="Guidance scale",
value=3.5,
info="default: 3.5",
step=0.5,
maximum=10,
minimum=2.0,
)
submit = gr.Button("Animate")
def read_video(video):
return video
def read_image(image):
return Image.fromarray(image)
# when user uploads a new video
motion_sequence.upload(read_video, motion_sequence, motion_sequence)
# when `first_frame` is updated
reference_image.upload(read_image, reference_image, reference_image)
# when the `submit` button is clicked
submit.click(
controller.animate,
[
reference_image,
motion_sequence,
width_slider,
height_slider,
length_slider,
sampling_steps,
guidance_scale,
seed_textbox,
],
animation,
)
# Examples
gr.Markdown("## Examples")
gr.Examples(
examples=[
[
"./configs/inference/ref_images/anyone-5.png",
"./configs/inference/pose_videos/anyone-video-2_kps.mp4",
],
[
"./configs/inference/ref_images/anyone-10.png",
"./configs/inference/pose_videos/anyone-video-1_kps.mp4",
],
[
"./configs/inference/ref_images/anyone-2.png",
"./configs/inference/pose_videos/anyone-video-5_kps.mp4",
],
],
inputs=[reference_image, motion_sequence],
outputs=animation,
)
return demo
demo = ui()
demo.launch(share=True)