-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsearch_config_memes_politics.yml
101 lines (76 loc) · 2 KB
/
search_config_memes_politics.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
small_dataset: False
_type: 'imdb'
supernet_arch: 'ofa'
arch: 'supernet_dynamic_model'
pretrained_path: "./saved_supernets/Memes-P/supernet_memes_politics_image.pth.tar"
maxout_weights: "./saved_supernets/Memes-P/supernet_memes_politics_text.pth.tar"
hw_lut_path: "./evaluate/backbone_eval/efficiency/lut_ofa_memes_agx.json"
fusion_lut: "./evaluate/fusion_eval/lut_fusion_agx.json"
batch_size: 64
batch_size_per_gpu: 64
post_bn_calibration_batch_num: 64
augment: "auto_augment_tf"
bn_momentum: 0.1
bn_eps: 1e-5
distributed: False
distributed_val: False
eval_only: True
multiprocessing_distributed: True
dropout: 0.2
#### cloud training resources ####
data_loader_workers_per_gpu: 2
### multimodal dataset ###
modality: 1
dataset: 'memes_politics'
dir_roi: "/home/imed/Desktop/datasets/hatefull_memes/harmeme_ROI_MOMENTA/pol/harmfulness"
dir_ent: "/home/imed/Desktop/datasets/hatefull_memes/harmeme_ENT_MOMENTA/pol/harmeme_pol_harmfulness"
dir_data: "/home/imed/Desktop/datasets/hatefull_memes/Harmeme_HarmP_Data/data/datasets/memes/defaults"
bpe_path: "/home/imed/Desktop/datasets/hatefull_memes/bpe_simple_vocab_16e6.txt.gz"
context_length: 77
extend: False
n_classes: 3
drop_last: True
task : 'classification'
resolution: 112
in_channels: 3
print_freq: 10
seed: 42
## search hyperparameters
evo_search_outer:
parent_popu_size: 128
survival_ratio: .5
mutate_size: 64
crossover_size: 64
mutate_prob: 0.4
crossover_prob: 0.8
evo_iter: 4
evo_search_inner:
# parent_popu_size: 8
survival_ratio: 0.25
# mutate_size: 4
# crossover_size: 4
# mutate_prob: 0.4
# crossover_prob: 0.8
# evo_iter: 1
# ------------Fusion search parameters
fusion_epochs: 50
C : 192
L : 16
multiplier : 2
steps : 2
node_steps : 1
node_multiplier : 1
num_outputs : 3
f1_type : 'weighted'
drpt : 0.1
num_input_nodes : 6
num_keep_edges : 2
arch_learning_rate : 0.0003
arch_weight_decay : 0.001
weight_decay : 0.0001
eta_max : 0.0001
eta_min : 0.000001
Ti : 1
Tm : 2
parallel : False
save : ''