Description
context_flashattention_nopad_fp16_fp8.txt
we have implemented a f8 version of context_flashattention_nopad.py. the v shape needs to be changed for performance improvement described in https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html. however, the current result is not correct, could you help us?
@triton.jit
def _fwd_kernel_fp8(
Q,
K,
V,
B_Loc,
sm_scale,
B_Start_Loc,
B_Seqlen,
B_Ctxlen,
Out,
stride_b_loc_b,
stride_b_loc_s,
stride_qbs,
stride_qh,
stride_qd,
stride_kbs,
stride_kh,
stride_kd,
stride_vbs,
stride_vh,
stride_vd,
stride_obs,
stride_oh,
stride_od,
num_queries_per_kv: int,
BLOCK_M: tl.constexpr,
BLOCK_DMODEL: tl.constexpr, # head size
BLOCK_DMODEL_PADDED: tl.constexpr, # head size padded to a power of 2
BLOCK_N: tl.constexpr,
SLIDING_WINDOW: tl.constexpr,
):
cur_batch = tl.program_id(0)
cur_head = tl.program_id(1)
start_m = tl.program_id(2)
cur_kv_head = cur_head // num_queries_per_kv
cur_batch_ctx_len = tl.load(B_Ctxlen + cur_batch)
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch) #当前batch的seq len
cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch) #当前batch的start index
cur_batch_query_len = cur_batch_seq_len - cur_batch_ctx_len
# start position inside of the query
# generally, N goes over kv, while M goes over query_len
block_start_loc = BLOCK_M * start_m
# initialize offsets
# [N]; starts at 0
offs_n = tl.arange(0, BLOCK_N)
# [D]; starts at 0
offs_d = tl.arange(0, BLOCK_DMODEL_PADDED)
# [M]; starts at current position in query
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
# [M,D]
off_q = (
(cur_batch_in_all_start_index + offs_m[:, None]) * stride_qbs +
cur_head * stride_qh + offs_d[None, :] * stride_qd)
dim_mask = tl.where(
offs_d < BLOCK_DMODEL, 1,
0).to(tl.int1) # [D]
#??? mask=dim_mask[None, :] &
q = tl.load(Q + off_q,
mask=(offs_m[:, None] < cur_batch_query_len),
other=0.0) # [M,D]
# initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") # [M]
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) # [M]
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL_PADDED],
dtype=tl.float32) # [M,D]
#whether v is fp8
v_fp8 = True if V.dtype.element_ty == tl.float8e5 else False
off_k = (offs_n[None, :] * stride_kbs + cur_kv_head * stride_kh +
offs_d[:, None] * stride_kd)
## about vshape refer to https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html
if v_fp8:
off_v = (offs_n[None, :] * stride_vbs + cur_kv_head * stride_vh +
offs_d[:, None] * stride_vd)
else:
off_v = (offs_n[:, None] * stride_vbs + cur_kv_head * stride_vh +
offs_d[None, :] * stride_vd)
k_ptrs = K + off_k
v_ptrs = V + off_v
# block_mask is 0 when we're already past the current query length
block_mask = tl.where(block_start_loc < cur_batch_query_len, 1, 0)
block_end_loc = tl.minimum((start_m + 1) * BLOCK_M, cur_batch_seq_len)
# compute query against itself (with causal mask)
for start_n in range(0, block_mask * block_end_loc, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
# -- compute qk ----
k = tl.load(k_ptrs +
(cur_batch_in_all_start_index + start_n) * stride_kbs,
mask=((start_n + offs_n[None, :]) < block_end_loc),
other=0.0)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k)
qk *= sm_scale
# apply causal mask
qk = tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), qk,
float("-inf"))
if SLIDING_WINDOW > 0:
qk = tl.where(
offs_m[:, None] -
(start_n + offs_n[None, :]) < SLIDING_WINDOW, qk, -10000)
# -- compute m_ij, p, l_ij
m_ij = tl.max(qk, 1)
p = tl.exp(qk - m_ij[:, None])
l_ij = tl.sum(p, 1)
# -- update m_i and l_i
m_i_new = tl.maximum(m_i, m_ij)
alpha = tl.exp(m_i - m_i_new)
beta = tl.exp(m_ij - m_i_new)
l_i_new = alpha * l_i + beta * l_ij
# -- update output accumulator --
# scale p
p_scale = beta / l_i_new
p = p * p_scale[:, None]
# scale acc
acc_scale = l_i / l_i_new * alpha
acc_scale = tl.where(offs_m >= start_n, acc_scale, 1.0)
acc = acc * acc_scale[:, None]
# update acc
## about vshape refer to https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html
if v_fp8:
v = tl.load(v_ptrs +
(cur_batch_in_all_start_index + start_n) * stride_vbs,
mask=((start_n + offs_n[None, :]) < block_end_loc),
other=0.0)
else:
v = tl.load(v_ptrs +
(cur_batch_in_all_start_index + start_n) * stride_vbs,
mask=((start_n + offs_n[:, None]) < block_end_loc),
other=0.0)
p = p.to(v.dtype)
acc += tl.dot(p, v)
# update m_i and l_i
l_i = l_i_new
m_i = m_i_new
# initialize pointers to output
off_o = (
(cur_batch_in_all_start_index + offs_m[:, None]) * stride_obs +
cur_head * stride_oh + offs_d[None, :] * stride_od)
out_ptrs = Out + off_o
tl.store(out_ptrs,
acc.to(tl.float16),
mask=(offs_m[:, None] < cur_batch_query_len))
return
@torch.inference_mode()
def context_attention_fwd_fp8(q,
k,
v,
o,
b_loc,
b_start_loc,
b_seq_len,
b_ctx_len,
max_input_len,
alibi_slopes=None,
sliding_window=None):
cap = current_platform.get_device_capability()
BLOCK = 128 if cap[0] >= 8 else 64
# need to reduce num. blocks when using fp32
# due to increased use of GPU shared memory
if q.dtype is torch.float32:
BLOCK = BLOCK // 2
# shape constraints head_size
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
assert Lq == Lk and Lk == Lv
# round up Lk to a power of 2 - this is required for Triton block size
Lk_padded = triton.next_power_of_2(Lk)
#print("Lk Lk_padded", Lk, Lk_padded)
sm_scale = 1.0 / (Lq**0.5)
#batch and num_query_head num_queries_per_kv
batch, head = b_seq_len.shape[0], q.shape[1]
num_queries_per_kv = q.shape[1] // k.shape[1]
grid = (batch, head, triton.cdiv(max_input_len, BLOCK)) # batch, num_query_head,
# 0 means "disable"
if sliding_window is None or sliding_window <= 0:
sliding_window = 0
num_warps = 8 if Lk <= 64 else 8
#qkv to fp8
q = q.to(torch.float8_e5m2) #e5m2
k = k.to(torch.float8_e5m2)
#[num_tokens, num_heads, head_size] to [num_tokens, num_heads, head_size]
#change v shape
v = v.permute(2, 1, 0).contiguous()
v = v.permute(2, 1, 0)
v = v.to(torch.float8_e5m2)
print("v.shape", v.shape)
print("v.stride", v.stride(0), v.stride(1), v.stride(2))
_fwd_kernel_fp8[grid](
q,
k,
v,
b_loc,
sm_scale,
b_start_loc,
b_seq_len,
b_ctx_len,
o,
b_loc.stride(0),
b_loc.stride(1),
q.stride(0),
q.stride(1),
q.stride(2),
k.stride(0),
k.stride(1),
k.stride(2),
v.stride(0),
v.stride(1),
v.stride(2),
o.stride(0),
o.stride(1),
o.stride(2),
num_queries_per_kv=num_queries_per_kv,
BLOCK_M=BLOCK,
BLOCK_DMODEL=Lk,
BLOCK_DMODEL_PADDED=Lk_padded,
BLOCK_N=BLOCK,
SLIDING_WINDOW=sliding_window,
num_warps=num_warps,
num_stages=1,
)
return