-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path64. Minimum Path Sum.py
42 lines (33 loc) · 1.29 KB
/
64. Minimum Path Sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class Solution(object):
# 递归遍历超出时间限制
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
return self.path(grid, 0, 0)
def path(self, grid, i, j):
if i == len(grid) or j == len(grid[0]):
return 1000000
if i == len(grid) - 1 and j == len(grid[0]) - 1:
return grid[i][j]
return grid[i][j] + min(self.path(grid, i + 1, j),
self.path(grid, i, j + 1))
class Solution(object):
# 递归遍历超出时间限制
# 动态规划 dp[i][j] = (i,j) 到右下角的最短距离
# dp[i][j] = grid[i][j] + min(dp[i][j+1], dp[j][i+1])
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
for i in range(len(grid) - 1, -1, -1):
for j in range(len(grid[0]) - 1, -1, -1):
if i == len(grid) - 1 and j != len(grid[0]) - 1:
grid[i][j] += grid[i][j + 1]
elif i != len(grid) - 1 and j == len(grid[0]) - 1:
grid[i][j] += grid[i + 1][j]
elif i < len(grid) - 1 and j < len(grid[0]) - 1:
grid[i][j] += min(grid[i][j + 1], grid[i + 1][j])
return grid[0][0]